Skip to main content

Advertisement

Log in

Bacteriophage cocktails as antibacterial agents in crop protection

  • Mini Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

The control of plant diseases using bacteriophages, as biological control agents (BCAs) is feasible and has been augmented recently. Also, the plant pathogenic bacteria evolve bacteriophage resistance, therefore, a single bacteriophage sometime fails due to host range and bacterial resistance, in natural conditions. In recent research, a combination of several bacteriophages has been reported as a precise scheme of biocontrol of diverse bacterial phytopathogens. This review is an insight into the beneficial science of formulating bacteriophage consortia or 'cocktail' for plant disease management. The review also explores the status of research in the area and explores the impediments and solutions for success in application of bacteriophage consortia for plant disease management and sustainable agriculture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez B, Lopez MM, Biosca EG (2019) Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Front Microbiol 10:2813

    Article  Google Scholar 

  • Baliyan N, Dheeman S, Maheshwari DK, Dubey RC, Vishnoi VK (2018) Rhizobacteria isolated under field first strategy improved chickpea growth and productivity. Environ Sustain 4:461–469

    Article  Google Scholar 

  • Balogh B (2002) Strategies for improving the efficacy of bacteriophages for controlling bacterial spot of tomato, Doctoral dissertation. University of Florida

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87(8):949–954

    Article  CAS  Google Scholar 

  • Born Y, Bosshard L, Duffy B, Loessner MJ, Fieseler L (2015) Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 5:e1074330

    Article  CAS  Google Scholar 

  • Born Y, Fieseler L, Thony V, Leimer N, Duffy B, Loessner MJ (2017) Engineering of bacteriophages Y2: dpoL1-C and Y2: luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 83(12):63–75

    Article  Google Scholar 

  • Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A (2017) Bacteriophages and bacterial plant diseases. Front Microbiol 8(5):34

    Google Scholar 

  • Buttimer C, Hendrix H, Lucid A, Neve H, Noben JP, Franz C, Coffey A (2018) Novel N4-Like bacteriophages of Pectobacterium atrosepticum. Pharmaceuticals 11(2):45

    Article  Google Scholar 

  • Carstens AB, Djurhuus AM, Kot W, Jacobs-Sera D, Hatfull GF, Hansen LH (2018) Unlocking the potential of 46 new bacteriophages for biocontrol of Dickeya solani. Viruses 10(11):621

    Article  CAS  Google Scholar 

  • Carstens AB, Djurhuus AM, Kot W, Hansen LH (2019) A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiol Lett 366(9):101

    Article  Google Scholar 

  • Catara V, Bella P (2020) Bacterial diseases. Integrated pest and disease management in greenhouse crops. Springer, Cham, pp 33–54

    Chapter  Google Scholar 

  • Chen J, Zhang H, Li J, Liu Y, Shi W, Hu H (2020) The toxic factor of copper should be adjusted during the ecological risk assessment for soil bacterial community. Ecol Indicat 111(3):1060–1072

    Google Scholar 

  • Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A, Ossowicki A, Lojkowska E (2015) Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10. 3 and ΦPD23. 1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One 10(3):e0119812

    Article  Google Scholar 

  • Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF (2015) Control of Pierce’s disease by phage. PLoS One 10(6):e0128902

    Article  Google Scholar 

  • Egbuna C, Sawicka B, Tijjani H, Kryeziu TL, Ifemeje JC, Skiba D, Lukong CB (2020) Biopesticides, safety issues and market trends. Natural remedies for pest, disease and weed control. Academic Press, New York, pp 43–53

    Chapter  Google Scholar 

  • Elhalag K, Nasr-Eldin M, Hussien A, Ahmad A (2018) Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J Basic Microbiol 58:658–669

    Article  CAS  Google Scholar 

  • Flores O, Retamales J, Nunez M, Leon M, Salinas P, Besoain X, Bastias R (2020) Characterization of bacteriophages against Pseudomonas syringae pv. actinidiae with potential use as natural antimicrobials in kiwifruit plants. Microorganisms 8(7):974

    Article  CAS  Google Scholar 

  • Gasic K, Kuzmanovic N, Ivanovic M, Prokic A, Sevic M, Obradovic A (2018) Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1, its survival and potential in control of pepper bacterial spot. Front Microbiol 9:2021

    Article  Google Scholar 

  • Ikeda TM, Gray MW (1999) Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40:567–578

    Article  CAS  Google Scholar 

  • Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73(6):1704–1711

    Article  CAS  Google Scholar 

  • Iriarte FB, Obradovic A, Wernsing MH, Jackson LE, Balogh B, Hong JA, Vallad GE (2012) Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: two possible strategies for improving bacteriophage persistence for plant disease control. Bacteriophage 2(4):e23530

    Article  Google Scholar 

  • Kering KK, Kibii BJ, Wei H (2019) Biocontrol of phytobacteria with bacteriophage cocktails. Pest Manag Sci 75(7):1775–1781

    Article  CAS  Google Scholar 

  • Liu N, Lewis C, Zheng W, Fu ZQ (2020) Phage cocktail therapy: multiple ways to suppress pathogenicity. Trends Plant Sci 25(4):315–317

    Article  CAS  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  Google Scholar 

  • Marrone PG (2014). The market and potential for biopesticides. In Biopesticides: state of the art and future opportunities In: American Chemical Society. 245–258.

  • Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE (2021) A new pipeline for designing phage cocktails based on phage-bacteria infection networks. Front Microbiol 12:564532

    Google Scholar 

  • Nagai H, Miyake N, Kato S, Maekawa D, Inoue Y, Takikawa Y (2017) Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. J Gen Plant Pathol 83:373–381

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rabiey M, Roy SR, Holtappels D, Franceschetti L, Quilty BJ, Creeth R, Jackson RW (2020) Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microb Biotechnol 13:1428–1445

    Article  CAS  Google Scholar 

  • Ramirez M, Neuman B, Ramirez CA (2020) Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biol Control 149:e104238

    Article  Google Scholar 

  • Rombouts S, Volckaert A, Venneman S, Declercq B, Vandenheuvel D, Allonsius CN, Klumpp J (2016) Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Front Microbiol 7:279

    Article  Google Scholar 

  • Roy T, Das N, Majumdar S (2020) Pesticide tolerant rhizobacteria: paradigm of disease management and plant growth Promotion. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer, Cham, pp 221–239

    Chapter  Google Scholar 

  • Sabri M, Benkirane R, Habbadi K, Sadik S, Ou-Zine M, Diouri M, Achbani EH (2021) Phages as a potential biocontrol of phytobacteria. Arch Phytopathol Plant Protec 54(18):1277–1291

    Article  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3(3):430–439

    Article  Google Scholar 

  • Schmerer M, Molineux IJ, Bull JJ (2014) Synergy as a rationale for phage therapy using phage cocktails. Peer J 2:e590

    Article  Google Scholar 

  • Smolarska A, Rabalski L, Narajczyk M, Czajkowski R (2018) Isolation and phenotypic and morphological characterization of the first Podoviridae lytic bacteriophages ϕA38 and ϕA41 infecting Pectobacterium parmentieri (former Pectobacterium wasabiae). Eur J Plant Pathol 150(2):413–425

    Article  Google Scholar 

  • Tewfike TA, Desoky SM (2015) Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann Agric Sci Moshtohor 53:615–624

    Article  Google Scholar 

  • Torres-Barceló C (2018) Phage therapy faces evolutionary challenges. Viruses 10(6):323–331

    Article  Google Scholar 

  • Valerio N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, Almeida A (2017) Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res 240(2):8–17

    Article  CAS  Google Scholar 

  • Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Friman VP (2019) Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnol 37(12):1513–1520

    Article  CAS  Google Scholar 

  • Wei C, Liu J, Maina AN, Mwaura FB, Yu J, Yan C, Wei H (2017) Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virologica Sinica 32(6):476–484

    Article  CAS  Google Scholar 

  • Zaczek-Moczydlowska MA, Young GK, Trudgett J, Fleming CC, Campbell K, O’Hanlon R (2020a) Genomic characterization, formulation and efficacy in planta of a Siphoviridae and Podoviridae protection cocktail against the bacterial plant pathogens Pectobacterium spp. Viruses 12(2):150

    Article  CAS  Google Scholar 

  • Zaczek-Moczydlowska MA, Young GK, Trudgett J, Plahe C, Fleming CC, Campbell K, O’Hanlon R (2020b) Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One 15(4):e0230842

    Article  CAS  Google Scholar 

  • Zhang Y, Peng X, Zhang H, Watts AB, Ghosh D (2018) Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations. Int J Pharm 542:1–07

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Head of the Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar (India) for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

NB and SD contributed to the preparation of the draft of the review and writing. SVD and VKV have read and summarized this review, and finally, SK and DKM finalized the manuscript.

Corresponding author

Correspondence to Nitin Baliyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliyan, N., Dhiman, S., Dheeman, S. et al. Bacteriophage cocktails as antibacterial agents in crop protection. Environmental Sustainability 5, 305–311 (2022). https://doi.org/10.1007/s42398-022-00237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-022-00237-6

Keywords

Navigation