Skip to main content
Log in

Endophytes as emphatic communication barriers of quorum sensing in Gram-positive and Gram-negative bacteria—a review

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Endophytes are the microorganisms (bacteria or fungi) which live inside the plant without causing any kind of unhealthy symptoms to the host. They are endosymbiont in nature and assist the plant in promoting their growth and development. Similar to bacteria, endophytes also own the quorum sensing (QS) system for communication with each other and use it to organize their gene expression among local populations. Particularly, this paradox is a density-dependent where these microbes use the cascade to control the genes that endorse attack, resistance, and multiplication of their community. With the continuing manifestation of resistance mechanisms against antibiotics shown by pathogens, there is a contemporary requirement for the development of alternative therapeutic approach. An anti-virulence and antimicrobial mechanism by which QS is obstructed, has been providing a way for the modification of pathogenic processes. Recognition and classification of target autoinducers along with their signaling pathway can be helpful for the researchers to combat the harmful and lethal effect of the pathogenic microorganisms with the help of endophytes secreting bio-active substances like malabaricone and rosmarinic acid. Therefore, the current review focuses on QS, quorum quenching and their respective signaling molecules of endophytes which endorse as the medicinal substitute of synthetic pharmaceutical drugs and protection of plants from phytopathogems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio 9:e02331-17

    Google Scholar 

  • Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg EP (2011) Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc Natl Acad Sci USA 108:7183–7188

    Google Scholar 

  • Anetzberger C, Reiger M, Fekete A, Schell U, Stambaugh N et al (2012) Autoinducers act as biological timers in Vibrio harveyi. PLoS ONE 7:10

    Google Scholar 

  • Ball AS, Chaparian RR, Kessel JCV (2017) Quorum sensing gene regulation by LuxR/HapR master regulators in vibrios. J Bacteriol 199(19):1–31

    Google Scholar 

  • Banerjee G, Ray AK (2017) Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiol Imm H 64(4):439–453

    CAS  Google Scholar 

  • Barnard AML, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GPC (2007) Virulence and secondary metabolite production in plant soft-rotting bacteria. Phil Trans R Soc B 362:1165–1183

    CAS  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    CAS  Google Scholar 

  • Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107(8):3776–3781

    CAS  Google Scholar 

  • Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14(9):17477–17500

    Google Scholar 

  • Chernin L (2011) Quorum-sensing signals as mediators of PGPR’s beneficial traits. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrients management. Springer, Berlin/Heidelberg, pp 209–236

    Google Scholar 

  • Chong YM, Yin WF, Ho CY, Mustafa MR et al (2011) Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J Nat Prod 74:2261–2264

    CAS  Google Scholar 

  • Chu Y-Y, Nega M, Wolfle M, Plener L, Grond S et al (2013) A new class of quorum quenching molecules from Staphylococcus Species affects communication and growth of Gram-negative bacteria. PLoS Pathog 9(9):e1003654

    CAS  Google Scholar 

  • Deng Y, Wu J, Eberl L, Zhang LH (2010) Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76:4675–4683

    CAS  Google Scholar 

  • Deng Y et al (2012) Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with the regulation of virulence through cyclic dimeric Guanosine Monophosphate turnover. Proc Natl Acad Sci USA 109:15479–15484

    CAS  Google Scholar 

  • Deng Y, Lim A, Lee J, Chen S, An S, Dong YH, Zhang LH (2014) Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiol 14:51

    Google Scholar 

  • Dixit S, Dubey RC, Maheshwari DK, Seth PK, Bajpai VK (2017) Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation. Braz J Microbiol 48:815–821

    CAS  Google Scholar 

  • Dong W, Zhu J, Guo X et al (2018) Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Sci Rep 8(1):6013

    Google Scholar 

  • Fahmi T, Port GC, Cho KH (2017) c-di-AMP: an essential molecule in the signaling pathways that regulate the viability and virulence of Gram-positive bacteria. Genes 8(8):197

    Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    CAS  Google Scholar 

  • Feng L et al (2015) A QRR noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–240

    CAS  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259

    CAS  Google Scholar 

  • Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21

    CAS  Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    CAS  Google Scholar 

  • Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. Wiley Interdiscip Rev Syst Biol Med 1:45–60

    CAS  Google Scholar 

  • Ha NT, Minh TQ, Hoi PX, Nguyen et al (2018) Biological control of potato tuber soft rot using N-acyl-l-homoserine lactone-degrading endophytic bacteria. Curr Sci 115(10):1921–1927

    CAS  Google Scholar 

  • Hawver LA, Jung SA, Ng WL (2016) Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev 40(5):738–752

    CAS  Google Scholar 

  • Hong KW, Koh CL, Sam CK, Yin WF, Chan KG (2012) Quorum quenching revisited-from signal decays to signaling confusion. Sensors 12:4661–4696

    Google Scholar 

  • Jakobsen TH, Van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Nielsen KF, Eberl L, Larsen TO, Tanner Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits gene controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325

    CAS  Google Scholar 

  • Jaramillo-Colorado B, Olivero- Verbel J, Stashenko EE, Wagner-Dobler I, Kunze B (2012) Anti-quorum sensing activity of essential oils from Colombian plants. Nat Prod Res 26(12):1075–1086

    CAS  Google Scholar 

  • Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436

    CAS  Google Scholar 

  • Koh CL, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM, Chan KG (2013) Plant-derived natural products as sources of anti- compounds. Sensors 13:6217–6228

    CAS  Google Scholar 

  • Konai MM, Dhanda G, Haldar J (2018) Talking through chemical languages: quorum sensing and bacterial communication. In: Kalia VC (ed) Quorum sensing and its biotechnological applications, 1st edn. Springer, Singapore, pp 17–42

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390

    CAS  Google Scholar 

  • Kyung KH, Lee YC (2001) Antimicrobial activities of sulfur compounds derived from S-alk(en)yl-l-cysteine sulfoxides in Allium and Brassica. Food Rev Int 17:183–198

    CAS  Google Scholar 

  • Lade H, Paul D, Kweon JH (2014) N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int 2014:1–25

    Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111

    CAS  Google Scholar 

  • Lenz DH et al (2004) The small RNA chaperone Hfq and multiple small RNAs control in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    CAS  Google Scholar 

  • Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and σ54. Mol Microbiol 36:940–954

    CAS  Google Scholar 

  • Liu X, Jia J, Popat R, Ortori CA, Li J, Diggle SP, Gao K, Camara M (2011) Characterisation of two systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to lifestyle. BMC Microbiol 11:26

    CAS  Google Scholar 

  • Mookherjee A, Singh S, Maiti MK (2017) Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 200:1–16

    Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    CAS  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    CAS  Google Scholar 

  • Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8:116–127

    CAS  Google Scholar 

  • Pereira CS, de Regt AK, Brito PH, Miller ST, Xavier KB (2009) Identification of functional LsrB-like autoinducer-2 receptors. J Bacteriol 191:6975–6987

    CAS  Google Scholar 

  • Pesavento C, Hengge R (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12:170–176

    CAS  Google Scholar 

  • Rajesh PS, Ravishankar RV (2014) Quorum quenching activity in the cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol Res 169(7–8):561–569

    CAS  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME et al (2005) Screening for quorum sensing inhibitors (QSI) by use of the novel genetic system, the QSI selector. J Bacteriol 187:1799–1814

    CAS  Google Scholar 

  • Reen FJ, Gutierrez-Barranquero JA, Parages ML, Gara F O (2018) Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol 102(5):2063–2073

    CAS  Google Scholar 

  • Remy B, Mion S, Plener L, Elias M, Chabriere E, Daude D (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203

    Google Scholar 

  • Rudrappa T, Bais HP (2008) Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal. J Agric Food Chem 56:1955–1962

    CAS  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    CAS  Google Scholar 

  • Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63

    CAS  Google Scholar 

  • Shin D, Frane ND, Brecht RM, Keeler J, Nagarajan R (2015) A comparative analysis of acyl-homoserine lactone synthase assays. ChemBioChem 16(18):2651–2659

    CAS  Google Scholar 

  • Singh HB (2014) Management of plant pathogens with microorganisms. Proc Indian Natl Sci Acad 80(2):443–454

    Google Scholar 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open microbiol J 11:53–62

    CAS  Google Scholar 

  • Sivasothy Y, Krishnan T, Chan KG et al (2016) Quorum sensing inhibitory activity of giganteone a from Myristica cinnamomea king against Escherichia coli biosensors. Molecules 21(3):391

    Google Scholar 

  • Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473

    CAS  Google Scholar 

  • Swem LR et al (2009) A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35:143–153

    CAS  Google Scholar 

  • Teplitski M, Robinson JB, Baure WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13(6):637–648

    CAS  Google Scholar 

  • Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S (2018) Quorum sensing intervened bacterial signaling: pursuit of its cognizance and repression. JGEB 16:239–252

    Google Scholar 

  • Vasavi HS, Arun AB, Rekha PD (2013) Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioca L. Asian Pac J. Trop Biomed 3(12):954–959

    Google Scholar 

  • Vasavi HS, Arun AB, Rekha PD (2014) Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 58(5):286–293

    CAS  Google Scholar 

  • Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa plant root interaction, pathogenicity, biofilm formation, and root exudation. Plant Physiol 134(1):320–331

    CAS  Google Scholar 

  • Zapata LS, Tabarez MR, Álvarez JC, Escobar VV (2017) Reviewing microbial behaviors in ecosystems leading to a natural quorum quenching occurrence. Braz Arch Biol Technol 60:e17160295

    Google Scholar 

  • Zhang W, Li C (2016) Exploiting quorum sensing interfering strategies in Gram-negative bacteria for the enhancement of environmental applications. Front Microbiol 6:1535

    Google Scholar 

Download references

Funding

Funding has been received form Science and Engineering Research Board with Grand No. (No.SB/EMEQ-088/2014,Dt. 28/01/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramappa Venkatesh Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh Kumar, R., Singh, R.P. & Mishra, P. Endophytes as emphatic communication barriers of quorum sensing in Gram-positive and Gram-negative bacteria—a review. Environmental Sustainability 2, 455–468 (2019). https://doi.org/10.1007/s42398-019-00079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00079-9

Keywords

Navigation