Skip to main content
Log in

Lessons learnt from the fire blight epidemics: a mini review

  • Review Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

The fire blight disease caused by Erwinia amylovora is a major threat to apple and pear production worldwide. After its first detection in Morocco in 2006, the disease was widely spread in the following years in the region, causing severe losses in quince, pear and apple productions. Several approaches were then taken from early detection to the management of the disease. In this review, we emphasize some of the aspects of the fire blight disease symptoms, disease cycle, and pathogen development as well as control methods and measures undertaken against the fire blight outbreak. Detection and control methods employed by farmers and imposed by the government were having much attention for the disease management. Integrated control strategies using tolerant cultivars in combination with sanitation practices as well as cultural, physical, chemical, and biological controls were deeply discussed in this review. In conclusion, plant inspection authorities, farmers, and industries have learned many lessons from this unforgettable and devastating epidemic, and now they will be further prepared for a similar situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data and materials are stated in the manuscript.

Abbreviations

EPPO:

European and Mediterranean Plant Protection Organization

VNBC:

Viable but non-culturable state

EPS:

Exopolysaccharide

EIP:

Emerging infections program

WTO:

The World Trade Organization

ONSSA:

National Office of Health and Food Safety

References

  • Aćimović SG, Zeng Q, McGhee GC, Sundin GW, Wise JC (2015) Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front Plant Sci 6:16. https://doi.org/10.3389/FPLS.2015.00016/Abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Aćimović G, Martin SKH, Turcotte DM, Meredith RL, Munck CA I (2020) Choosing an adequate pesticide delivery system for managing pathogens with difficult biologies: case studies on Diplodia corticola, Venturia inaequalis and Erwinia amylovora. In: Plant diseases-current threats and management trends. IntechOpen. https://doi.org/10.5772/intechopen.87956

  • Adaskaveg JE, Förster H, Wade ML (2011) Effectiveness of kasugamycin against Erwinia amylovora and its potential use for managing fire blight of pear. Plant Dis 95:448–454

    Article  CAS  Google Scholar 

  • Águila-Clares B, Castiblanco LF, Quesada JM, Penyalver R, Carbonell J, López MM, Marco-Noales E, Sundin GW (2018) Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene. Mol Plant Pathol 19:169–179. https://doi.org/10.1111/mpp.12510

    Article  CAS  PubMed  Google Scholar 

  • Ait Bahadou S, Ouijja A, Tahiri A (2016) Evaluation of biological control agent Pantoea agglomerans P10c against fire blight in Morocco. Afr J Agric Res 11:1661–1667

    Article  Google Scholar 

  • Ait Bahadou S, Ouijja A, Karfach A, Tahiri A, Lahlali R (2018) New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb Pathog 117:7–15. https://doi.org/10.1016/j.micpath.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  • Ait bahadou S, Ouijja A, Tahiri A, Lahlali R (2020) Maladie du feu bactérien (Erwinia amylovora) au Maroc: situation actuelle et mesures prises pour la gérer | Revue Marocaine des Sciences Agronomiques et Vétérinaires. Retrieved from https://agrimaroc.org/index.php/Actes_IAVH2/article/view/800. Accessed 22 Feb 2021

  • Ameur A, Ennaji M, Cesborn S, Manseau CH, Rhallabi N, Achbani H (2014) Characterization of moroccan population of Erwinia amylovora, the causal agent of fire blight on rosaceous. Int J Biosci Biochem Bioinforma 4:200–203

    CAS  Google Scholar 

  • Anju CP, Subhramanian S, Sizochenko N, Melge AR, Leszczynski J, Mohan CG (2019) Multiple e-Pharmacophore modeling to identify a single molecule that could target both streptomycin and paromomycin binding sites for 30S ribosomal subunit inhibition. J Biomol Struct Dyn 37:1582–1596. doi: https://doi.org/10.1080/07391102.2018.1462731

    Article  CAS  Google Scholar 

  • Babadoust M (2005) Report on plant Disease Department of Crop Sciences, University of Illinois, at Urbana-Champaign, RPD No. 801 June 2005 University of Illinois Extension. College of Agriculture, Consumer and Environmental Science

  • Bastas KK (2020) Management of Erwinia amylovora by potential bio-pesticides in vitro and in vivo conditions. Turk J Agric Food Sci Technol 8:38–45. https://doi.org/10.24925/turjaf.v8isp1.38-45.3933

    Article  Google Scholar 

  • Baysal O, Laux P, Zeller W (2001) Further studies on the induced resistance (IR) effect of plant extract from Hedera helix against fire blight (Erwinia amylovora). In: IX International Workshop on Fire Blight 590

  • Beckerman J (2007) Fire blight on fruit trees in the home orchard. Fruit Diseases BP-30-W

  • Bereswill S, Pahl A, Bellemann P, Zeller W, Geider K (1992) Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl Environ Microbiol 58:3522–3526

    Article  CAS  Google Scholar 

  • Bereswill S, Bugert P, Bruchmüller I, Geider K (1995) Identification of the fire blight pathogen, Erwinia amylovora, by PCR assays with chromosomal DNA. Appl Environ Microbiol 61:2636–2642

    Article  CAS  Google Scholar 

  • Bergmaier D, Lacroix C, Macedo MG, Champagne C (2001) New method for exopolysaccharide determination in culture broth using stirred ultrafiltration cells. Appl Microbiol Biotechnol 57:401–406

    Article  CAS  Google Scholar 

  • Billing E, Baker LAE, Crosse JE, Garrett CME (1961) Characteristics of English isolates of Erwinia amylovora (Burrill) Winslow et al. J Appl Bacteriol 24:195–211

    Article  Google Scholar 

  • Biondi E, Bazzi C, Vanneste JL (2004) Reduction of fire blight incidence on apple flowers and colonisation of pear shoots in experimental orchards using Pseudomonas spp. IPV-BO G19 and IPV-BO 3371. In: X International Workshop on Fire Blight 704

  • Boucher M, Collins R, Cox K, Loeb G (2019) Effects of exposure time and biological state on acquisition and accumulation of Erwinia amylovora by Drosophila melanogaster. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00726-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher M, Collins R, Harling K, Brind’Amour G, Cox K, Loeb G (2020a) Interactions between Delia platura and Erwinia amylovora associated with insect mediated transmission of shoot blight. PhytoFrontiers™ PHYTOFR-08-20-0. https://doi.org/10.1094/PHYTOFR-08-20-0013-R

  • Boucher M, Collins R, Hesler S, Cox K, Loeb G (2020b) The effect of Erwinia amylovora infection in apple saplings and fruit on the behavior of Delia platura (Diptera: Anthomyiidae). Environ Entomol. https://doi.org/10.1093/ee/nvaa153

    Article  Google Scholar 

  • Bubán T, Orosz-Kovács Z (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol 238:183–194

    Article  Google Scholar 

  • Bubán T, Sallai P, Deme J (2004) Field trials with non-bactericide products to control fire blight in apple orchards. Int J Hortic Sci. https://doi.org/10.31421/IJHS/10/2/461

    Article  Google Scholar 

  • Celetti M (2013) « blossom protect: a new biopesticide against fire blight », Ministry of Agriculture and Food and Rural Affairs. Retrieved from http://www.omafra.gov.on.ca/english/crops/organic/news/2013/2013-03a3.htm. Accessed 15 Oct 2020

  • Cellini A, Giacomuzzi V, Donati I, Farneti B, Rodriguez-Estrada MT, Savioli S, Angeli S, Spinelli F (2019) Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of Erwinia amylovora. ISME J 13:847–859. https://doi.org/10.1038/s41396-018-0319-2

    Article  CAS  PubMed  Google Scholar 

  • Cesbron S (2009) Interaction of Erwinia amylovora hrp mutants with the pathogenic parent and the host plant leading to control of fire blight disease of apple: Research for the mechanisms which modulate compatibility. Université d’Angers. Retrieved from https://tel.archives-ouvertes.fr/tel-00455109

  • Chen C, Juan C, Hu B-S, Jiang Y-H, Liu F-Q (2007) Potential distribution of alien invasive species and risk assessment: a case study of Erwinia amylovora in China. Agric Sci China 6:688–695

    Article  Google Scholar 

  • Chiou CS, Jones AL (1995a) Expression and identification of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora. Gene 152:47–51

    Article  CAS  Google Scholar 

  • Chiou CS, Jones AL (1995b) Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324–328

    Article  CAS  Google Scholar 

  • Cox KD, Villani SM, Ayer K, Tancos KA (2016) Evaluation of bactericide and chemical regulator programs for the management of fire blight on ‘Idared’ apples in NY. Plant Dis Manag Rep 10:PF014

  • Dewdney MM, Turechek WW, Biggs AR (2006) A statistical comparison of MARYBLYT and Cougarblight with sensitivity analysis.Acta Hortic. 171-176-2006 no.704.

  • Donat V, Biosca EG, Rico A, Penalver J, Borruel M, Berra D, Basterretxea T, Murillo J, Lopez MM (2005) Erwinia amylovora strains from outbreaks of fire blight in Spain: phenotypic characteristics. Ann Appl Biol 146:105–114

    Article  Google Scholar 

  • Doolotkeldieva T, Bobusheva S (2016) Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv Microbiol 06:831–851. https://doi.org/10.4236/aim.2016.611080

    Article  CAS  Google Scholar 

  • Doukkali L, Tahiri A, Tazi B, Guenoun F (2018) Chemical composition and antibacterial activity of two essential oils of rosemary against Erwinia amylovora, the causal agent fire blight

  • Eastgate JA (2000) Erwinia amylovora: the molecular basis of fireblight disease. Mol Plant Pathol 1:325–329

    Article  CAS  Google Scholar 

  • Elkins RB, Temple TN, Shaffer CA, Ingels CA, Lindow SB, Zoller BG, Johnson KB (2015) Evaluation of dormant-stage inoculum sanitation as a component of a fire blight management program for fresh-market Bartlett pear. Plant Dis 99:1147–1152

    Article  Google Scholar 

  • EPPO (2019) EPPO global database. Retrieved from https://gd.eppo.int. Accessed 19 Dec 2020

  • Fan C, Guo M, Liang Y, Dong H, Ding G, Zhang W, Tang G, Yang J, Kong D, Cao Y (2017) Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin. Carbohydr Polym 172:322–331. doi: https://doi.org/10.1016/j.carbpol.2017.05.050

    Article  CAS  PubMed  Google Scholar 

  • Farkas Á, Mihalik E, Dorgai L, Bubán T (2012) Floral traits affecting fire blight infection and management. Trees 26:47–66. doi: https://doi.org/10.1007/s00468-011-0627-x

    Article  Google Scholar 

  • Fatmi M(2007) Report on fire blight in pip rosaceae, Complexe Horticole d’Agadir, Phytobacteriology Laboratory., pp. P 8–9

  • Fatmi M, Bougsiba M, Saoud H (2008) First report of fire blight caused by Erwinia amylovora on pear, apple, and quince in Morocco. Plant Dis 92:314

    Article  CAS  Google Scholar 

  • Fendrihan S, Lixandru M (2019) Erwinia amylovora and its control methods—a short review. Int J Biosci Agric Technol 10:1–5

    Google Scholar 

  • Förster H, McGhee GC, Sundin GW, Adaskaveg JE (2015) Characterization of streptomycin resistance in isolates of Erwinia amylovora in California. Phytopathology 105:1302–1310

    Article  Google Scholar 

  • Gaganidze DL, Aznarashvili MA, Sadunishvili TA, Abashidze EO, Gureilidze MA, Gvritishvili ES (2018) Fire blight in Georgia. Ann Agrar Sci 16:12–16. doi: https://doi.org/10.1016/j.aasci.2018.02.001

    Article  Google Scholar 

  • Gayder P, Castle S (2019) Host range of bacteriophages against a world-wide collection of Erwinia amylovora determined using a quantitative PCR assay. Viruses 11:910. https://doi.org/10.3390/v11100910

    Article  CAS  PubMed Central  Google Scholar 

  • Gill JJ, Svircev AM, Smith R, Castle AJ (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138

    Article  CAS  Google Scholar 

  • Gorris MT, Cambra M, Llop P, López MM, Lecomte P, Chartier R, Paulin J-P (1995) A sensitive and specific detection of Erwinia amylovora based on the ELISA-DASI enrichment method with monoclonal antibodies. In: VII International Workshop on Fire Blight 411

  • Habibi R, Tarighi S, Behravan J, Taheri P, Kjøller AH, Brejnrod A, Madsen JS, Sørensen SJ (2017) Whole-genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora. Genome Announc. https://doi.org/10.1128/genomeA.00026-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannou N, Mondy S, Planamente S, Moumni M, Llop P, López M, Manceau C, Barny M-A, Faure D (2013) Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas. Morocco Res Microbiol 164:815–820. doi: https://doi.org/10.1016/j.resmic.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharana SS, Mazzola M (2020) Influence of rootstock genotype on efficacy of anaerobic soil disinfestation for control of apple nursery replant disease. Eur J Plant Pathol 157:39–57. doi: https://doi.org/10.1007/s10658-020-01977-z

    Article  CAS  Google Scholar 

  • Hilber-Bodmer M, Schmid M, Ahrens CH, Freimoser FM (2017) Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiol 17:4

    Article  Google Scholar 

  • Hussein AN, Mohamed RY, Amein TAM (2019) Biological control of fire blight disease on pear caused by Erwinia amylovora in Erbil Province/Iraq. Tikrit J Agric Sci 19:65–71. https://doi.org/10.25130/TJAS.V19I3.406

    Article  Google Scholar 

  • Ivanovic M, Kuzmanovic N, Gasic K, Prokic A, Zlatkovic N, Obradovic A (2019) Specificity and sensitivity of three PCR-based methods for detection of Erwinia amylovora in pure culture and plant material. Genetika 51:1039–1052. https://doi.org/10.2298/GENSR1903039I

    Article  Google Scholar 

  • Johnson KB (2000) Fire blight of apple and pear. Plant Health Inst. https://doi.org/10.1094/phi-i-2000-0726-01

    Article  Google Scholar 

  • Johnson KB, Stockwell VO (1998) Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol 36:227–248

    Article  CAS  Google Scholar 

  • Klarzynski O, Fritig B (2001) Stimulation of the natural defenses of plants. Comptes Rendus l’Académie Des Sci Ser III Sci La Vie 324:953–963. https://doi.org/10.1016/S0764-4469(01)01371-3

    Article  CAS  Google Scholar 

  • Klee SM, Sinn JP, Christian E, Holmes AC, Zhao K, Lehman BL, Peter KA, Rosa C, McNellis TW (2020) Virulence genetics of an Erwinia amylovora putative polysaccharide transporter family member. J Bacteriol. https://doi.org/10.1128/JB.00390-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunz S (2006) « Développement de Blossom-Protect une préparation de levure pour la réduction des infections des fleurs par le feu bactérien ». Bio-Protect n°7, p 5

  • Laforest M, Bisaillon K, Ciotola M, Cadieux M, Hébert P-O, Toussaint V, Svircev AM (2019) Rapid identification of Erwinia amylovora and Pseudomonas syringae species and characterization of E. amylovora streptomycin resistance using quantitative PCR assays. Can J Microbiol 65:496–509. https://doi.org/10.1139/cjm-2018-0587

    Article  CAS  PubMed  Google Scholar 

  • Le Roux PMF, Khan MA, Broggini GAL, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. 710–722. https://doi.org/10.1139/G10-047. 53

  • Leathers TD, Saunders LP, Bowman MJ, Price NPJ, Bischoff KM, Rich JO, Skory CD, Nunnally MS (2020) Inhibition of Erwinia amylovora by Bacillus nakamurai. Curr Microbiol 77:875–881. https://doi.org/10.1007/s00284-019-01845-y

    Article  CAS  PubMed  Google Scholar 

  • Llop P, Bonaterra A, Peñalver J, López MM, Peñalver J, López MM (2000) Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovorain asymptomatic plant material. Appl Environ Microbiol 66:2071–2078. https://doi.org/10.1128/AEM.66.5.2071-2078.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny M-A, Sundin GW, Smits THM, Duffy B (2011) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494. https://doi.org/10.1146/annurev-phyto-081211-172931

    Article  CAS  Google Scholar 

  • McGrath MJ, Koczan JM, Kennelly MM, Sundin GW (2009) Evidence that prohexadione-calcium induces structural resistance to fire blight infection. Phytopathology 99:591–596. doi: https://doi.org/10.1094/PHYTO-99-5-0591

    Article  CAS  PubMed  Google Scholar 

  • McManus PS, Jones AL(1995) Detection of Erwinia amylovora by nested PCR and PCR-dot-blot and reverse blot hybridizations. In: VII International Workshop on Fire Blight 411

  • Molzhigitova A, Mikiciński A, Sobiczewski P (2019) Efficacy of chemical products and epiphytic bacteria in control of fire blight (Erwinia amylovora). Exp Biol 81:56–65. https://doi.org/10.26577/eb-2019-4-b6

    Article  Google Scholar 

  • Momol MT, Norelli JL, Piccioni DE, Momol EA, Gustafson HL, Cummins JN, Aldwinckle HS (1998) Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis 82:646–650. https://doi.org/10.1094/PDIS.1998.82.6.646

    Article  CAS  PubMed  Google Scholar 

  • Morel J (2007) « Lutte contre le feu bactérien en Suisse ». Rapport du Conseil fédéral, Confédération suisse., pp. pp 2–22

  • Murray M (2021) July 27 fire blight in Utah: an annual management guide. Retrieved 15 February 2022, from https://digitalcommons.usu.edu/extension_curall/902. Accessed 8 June 2021

  • Narayanasamy P (2013) Biological management of diseases of crops. Springer Netherlands, Dordrecht, pp 1–70. https://doi.org/10.1007/978-94-007-6380-7

    Book  Google Scholar 

  • Norelli JL, Holleran HT, Johnson WC, Robinson TL, Aldwinckle HS (2003) Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Dis 87:26–32. https://doi.org/10.1094/PDIS.2003.87.1.26

    Article  CAS  PubMed  Google Scholar 

  • Ordax M, Marco-Noales E, López MM, Biosca EG (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72:3482–3488. https://doi.org/10.1128/AEM.72.5.3482-3488.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordax M, Biosca EG, Wimalajeewa SC, López MM, Marco-Noales E (2009) Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state. J Appl Microbiol 107:106–116. https://doi.org/10.1111/j.1365-2672.2009.04187.x

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Lee Y-G, Kim J-S, Cha J-S, Oh C-S (2017) Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J Plant Pathol 99:59–63

    Google Scholar 

  • Park J, Lee GM, Kim D, Park DH, Oh C-S (2018) Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol J 34:445

    Article  CAS  Google Scholar 

  • Pattemore DE, Goodwin RM, McBrydie HM, Hoyte SM, Vanneste JL (2014) Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae. Australas Plant Pathol 43:571–575. https://doi.org/10.1007/s13313-014-0306-7

    Article  Google Scholar 

  • Paulin J-P (2000) Erwinia amylovora: general characteristics, biochemistry and serology. pdfs.semanticscholar.org. Retrieved from https://pdfs.semanticscholar.org/f91b/c15a86c8908f03af2d685eb27cc6c26115dd.pdf. Accessed 10 Mar 2020

  • Philion V (2011) Description and preliminary validation of RIMpro-Erwinia, a new model for fire blight forecast Virtualisation météo View project. Actahort Org. https://doi.org/10.17660/ActaHortic.2011.896.43

    Article  Google Scholar 

  • Piqué N, Miñana-Galbis D, Merino S, Tomás JM (2015) Virulence factors of Erwinia amylovora: a review. 16. Retrieved from https://www.mdpi.com/1422-0067/16/6/12836/htm. Accessed 16 Nov 2021

  • Pirhonen M, Heino P, Helander I (1981) P Harju Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/0882401088900630. Accessed 18 May 2020

  • Popović T, Jelušić A, Živković L, Živković N, Iličić R, Stanisavljević R, Stanković S (2020) Identification, genetic characterization and virulence of Serbian Erwinia amylovora isolates. Eur J Plant Pathol 157:857–872. https://doi.org/10.1007/s10658-020-02046-1

    Article  CAS  Google Scholar 

  • Przybyla AA, Bokszczanin KL, Schollenberger M, Gozdowski D, Madry W, Odziemkowski S (2012) Fire blight resistance of pear genotypes from different European countries. Trees 26:191–197. doi: https://doi.org/10.1007/s00468-011-0646-7

    Article  PubMed  Google Scholar 

  • Psallidas P, Tsiantos CJ (2000) Fire blight: the disease and its chemical control of fire blight. Cabdirect.Org. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20083014941. Accessed 8 June 2020

  • Pusey PL, Stockwell VO, Mazzola M (2009) Biological control epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Am Phytopath Soc 99:571. https://doi.org/10.1094/PHYTO-99-5-0571

    Article  Google Scholar 

  • Reig G, Lordan J, Hoying S, Fargione M, Donahue DJ, Francescatto P, Acimovic D, Fazio G, Robinson T (2020) Long-term Performance of ‘Delicious’ apple trees grafted on Geneva® rootstocks and trained to four high-density systems under New York State climatic conditions. HortScience 55:1538–1550. doi: https://doi.org/10.21273/HORTSCI14904-20

    Article  CAS  Google Scholar 

  • Rizzuti A, Aguilera-Sáez L, Santoro F, Valentini F, Gualano S, D’ONGHIA A, Gallo V, Mastrorilli P, Latronico M (2018) Detection of Erwinia amylovora in pear leaves using a combined approach by hyperspectral reflectance and nuclear magnetic resonance spectroscopy. Phytopathol Mediterr 57:296–306

    Google Scholar 

  • Roach DR, Sjaarda D, Castle AJ, Svircev AM( 2011) Bacteriophages as biopesticides: role of bacterial exopolysaccharides. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium. https://doi.org/10.17660/ActaHortic.2011.896.65

  • Robinson T, Aldwinckle H (2001) Control of blossom, shoot and rootstock fire blight in young, dwarf apple trees through nutrition, pruning and growth regulators. New York State IPM Program Retrieved from https://ecommons.cornell.edu/handle/1813/46263

  • Rougerie-Durocher S, Philion V, Szalatnay D (2020) Measuring and modelling of apple flower stigma temperature as a step towards improved fire blight prediction. Agric For Meteorol 295:108171. doi: https://doi.org/10.1016/j.agrformet.2020.108171

    Article  Google Scholar 

  • Rühmann S, Pfeiffer J, Brunner P, Szankowski I, Fischer TC, Forkmann G, Treutter D (2013) Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans. Plant Physiol Biochem 72:62–71. https://doi.org/10.1016/j.plaphy.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  • Şahin M, Mısırlı A, Özaktan H (2020) Determination of fire blight (Erwinia amylovora) susceptibility in Turkey’s Cydonia oblonga Mill. Germplasm Eur J Plant Pathol 157:227–237. https://doi.org/10.1007/s10658-020-01971-5

    Article  CAS  Google Scholar 

  • Santander RD, Biosca G E (2017) Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures. PeerJ 5:e3931. doi: https://doi.org/10.7717/peerj.3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santander RD, Figàs-Segura À, Biosca EG (2018) Erwinia amylovora catalases KatA and KatG are virulence factors and delay the starvation-induced viable but non-culturable (VBNC) response. Mol Plant Pathol 19:922–934. https://doi.org/10.1111/mpp.12577

    Article  CAS  PubMed  Google Scholar 

  • Santander RD, Català-Senent JF, Figàs-Segura À, Biosca EG (2020) From the roots to the stem: unveiling pear root colonization and infection pathways by Erwinia amylovora. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa210

    Article  PubMed  Google Scholar 

  • Santos Kron A, Zengerer V, Bieri M, Dreyfuss V, Sostizzo T, Schmid M, Lutz M, Remus-Emsermann MNP, Pelludat C (2020) Pseudomonas orientalis F9 pyoverdine, safracin, and phenazine mutants remain effective antagonists against Erwinia amylovora in apple flowers. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02620-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Satyvaldiev AS, Zhasnakunov ZK, Omurzak E, Doolotkeldieva TD, Bobusheva ST, Orozmatova GT, Kelgenbaeva Z(2018) Copper nanoparticles: synthesis and biological activity. In: IOP Conference series: materials science and engineering. IOP Publishing, Vol. 302

  • Schnabel EL, Jones AL (2001) Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Appl Environ Microbiol 67:59–64. https://doi.org/10.1128/AEM.67.1.59-64.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröpfer S, Böttcher C, Wöhner T, Richter K, Norelli J, Rikkerink EHA, Hanke M-V, Flachowsky H (2018) A single effector protein, AvrRpt2 EA, from Erwinia amylovora can cause fire blight disease symptoms and Iinduces a salicylic acid–dependent defense response. Mol Plant-Microbe Interact 31:1179–1191. https://doi.org/10.1094/MPMI-12-17-0300-R

    Article  PubMed  Google Scholar 

  • Schwarczinger I, Kiss E, Süle S, Tóth M, Hevesi M(2011) Control of fire blight by bacteriophages on apple flowers. In: Acta horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium. - doi: https://doi.org/10.17660/ActaHortic.2011.896.66

  • Seibold A, Fried A, Kunz S, Moltmann E, Lange E, Jelkmann W (2004) Yeasts as antagonists against fireblight. EPPO Bull 34:389–390. doi: https://doi.org/10.1111/j.1365-2338.2004.00766.x

    Article  Google Scholar 

  • Sharifazizi M, Harighi B, Sadeghi A (2017) Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol Control 104:28–34. https://doi.org/10.1016/j.biocontrol.2016.10.007

    Article  Google Scholar 

  • Singh US, Kohmoto K, Singh RP (1995) Pathogenesis and host specificity in plant diseases: Histopathological, biochemical, genetic and molecular bases. Pergamon: Elsevier Science

  • Slack SM, Zeng Q, Outwater CA, Sundin GW (2017) Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology® 107:403–411. https://doi.org/10.1094/PHYTO-09-16-0352-R

    Article  CAS  Google Scholar 

  • Slack S, Walters KJ, Outwater C, Sundin GW (2020) Effect of Kasugamycin, oxytetracycline, and streptomycin on in-orchard population dynamics of Erwinia amylovora on apple flower stigmas. Plant Dis. https://doi.org/10.1094/PDIS-07-20-1469-RE

    Article  Google Scholar 

  • Slack SM, Walters KJ, Outwater CA, Sundin GW (2021) Effect of Kasugamycin, oxytetracycline, and streptomycin on in-orchard population dynamics of Erwinia amylovora on apple flower stigmas. Plant Dis 105:1843–1850. https://doi.org/10.1094/PDIS-07-20-1469-RE

    Article  PubMed  Google Scholar 

  • Smith DDN, Williams AN, Verrett JN, Bergbusch NT, Manning V, Trippe K, Stavrinides J (2019) Resistance to two vinylglycine antibiotic analogs is conferred by inactivation of two separate amino acid transporters in Erwinia amylovora. J Bacteriol. https://doi.org/10.1128/JB.00658-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Solymar (2006) Integrated management of fire blight in apples and pears in Canada. Agriculture et Agroalimentaire Canada. Retrieved from https://agriculture.canada.ca/. Accessed 22 June 2020

  • Steiner P (1998) How good are our options with copper, bio-controls and alliette for fire blight control? Coll Agric. Retrieved from http://veg-fruit.cropsci.illinois.edu/Diseases/Fruit/Apple/Fire-Blight/Copper.pdf. Accessed 8 July 2020

  • Steiner P, Van Der Zwet T, Biggs AR(2006) Fire blight of apple, West VirginiaUniversity Davis college of Agriculture, Forestry and Consumer Science. Suppression of blossom blight. In: 11th International Workshop on Fire Blight

  • Stoffer AJ (2017) Functional characterization of a novel nucleobase transporter from Erwinia amylovora, the bacterial causative agent of fire blight disease in apples and pears. Purdue University

    Google Scholar 

  • Svircev AM, Kim WS, Lehman SM, Castle AJ (2009) Erwinia amylovora: modern methods for detection and differentiation. Methods Mol Biol 508:115–129. https://doi.org/10.1007/978-1-59745-062-1_10

    Article  CAS  PubMed  Google Scholar 

  • Tancos KA, Cox KD (2017) Effects of Consecutive Streptomycin and Kasugamycin Applications on Epiphytic Bacteria in the Apple Phyllosphere. Plant Dis 101:158–164. doi: https://doi.org/10.1094/PDIS-06-16-0794-RE

    Article  CAS  PubMed  Google Scholar 

  • Teviotdale BL (2011) Fire Blight. UC Statew. Integr. Pest Manag. Progr. UC ANR Publ. 7414

  • Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y (2017) Type VI secretion systems of Erwinia amylovora contribute to bacterial competition, virulence, and exopolysaccharide production. Phytopathology® 107:654–661. https://doi.org/10.1094/PHYTO-11-16-0393-R

    Article  CAS  Google Scholar 

  • Van Der Zwet T (1979) Fire blight: A bacterial disease of rosaceous plants. USDA Agriculture Handbook: No. 510. US Department of Agriculture, USA, pp 1–200

  • Van Der Zwet T, Beer SV (1992) Fire blight: its nature, prevention, and control: a practice guide to integrated disease management. Agriculture Information Bulletin no. 631. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Vanneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News Inf 17:67 N–78 N

    Google Scholar 

  • Vanneste JL (2000) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI

    Book  Google Scholar 

  • Vanneste JL, Cornish DA, Spinelli F, Yu J (2004) Colonisation of apple and pear leaves by different strains of biological control agents of fire blight. N Z Plant Prot 57:49–53

    Google Scholar 

  • Varympopi A, Dimopoulou A, Theologidis I, Karamanidou T, Kaldeli Kerou A, Vlachou A, Karfaridis D, Papafotis D, Hatzinikolaou DG, Tsouknidas A, Skandalis N (2020) Bactericides based on copper nanoparticles restrain growth of important plant pathogens. Pathogens 9:1024. doi: https://doi.org/10.3390/pathogens9121024

    Article  CAS  PubMed Central  Google Scholar 

  • Vrancken K, Holtappels M, Schoofs H, Deckers T, Valcke R (2013) Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology 159:823–832

    Article  CAS  Google Scholar 

  • Warneys R, Gaucher M, Robert P, Aligon S, Anton S, Aubourg S, Barthes N, Braud F, Cournol R, Gadenne C (2018) Acibenzolar-S-methyl reprograms apple transcriptome toward resistance to rosy apple aphid. Front. Plant Sci 9:1795

    Google Scholar 

  • Webber III JB (2019) Characterization and cultivar susceptibility assessment of bacterial blight in hazelnut caused by Xanthomonas arboricola pv. corylina. Retrived from https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/sb397f857

  • Winslow C-E, Broadhurst J, Buchanan RE, Krumwiede C Jr, Rogers LA, Smith GH (1920) The families and genera of the bacteria: final report of the committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 5:191

    Article  CAS  Google Scholar 

  • Wu Y, Yang F, Gong W, Ahmed S, Fan Y, Wu X, Yong T, Liu W, Shu K, Liu J, Du J, Yang W (2017) Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. J Integr Agric 16:1331–1340. doi: https://doi.org/10.1016/S2095-3119(16)61525-3

    Article  Google Scholar 

  • WTO (2003) «Measures affecting the importation of apples », Rapport de groupe spécial., pp. pp 245–296

  • Yaich M, Fatmi M, Bougsiba M, Valentini F, Scuderi G, D’onghia AM, Cirvilleri G (2011) Fire blight (Erwinia amylovora [Burrill] Winslow) in Morocco: importance, geographical distribution and characterization. Phytopathol Mediterr 50:212–227

    CAS  Google Scholar 

  • Yakoubi S, Cherrat A, Diouri M, Hilali FEL, Zair T (2014) Chemical composition and antibacterial activity of Thymus zygis subsp. gracilis (Boiss.) R. Morales essential oils from Morocco. Mediterr J Chem 3:746–758

    Article  Google Scholar 

  • Yashiro E, McManus PS (2012) Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PLoS ONE 7:e37131. doi: https://doi.org/10.1371/journal.pone.0037131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Hulin MT, Sundin GW (2020) Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. J Plant Pathol 103:25–39. https://doi.org/10.1007/S42161-020-00623-1

    Article  Google Scholar 

  • Zeller W (2006) Status of biocontrol methods against fire blight. Phytopathol Pol 39:71–78

    Google Scholar 

  • Zhang W, Yan H, Zhu Z, Zhang C, Du P, Zhao W, Li W (2020) Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit. J Zhejiang Univ B 21:716–726. https://doi.org/10.1631/jzus.B2000281

    Article  CAS  Google Scholar 

  • Zhao Y, Tian Y, Wang L, Geng G, Zhao W, Hu B, Zhao Y (2019) Fire blight disease, a fast-approaching threat to apple and pear production in China. J Integr Agric 18:815–820. doi: https://doi.org/10.1016/S2095-3119(18)62033-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Phytopathology Unit, Department of Plant Protection and Environment of the Ecole Nationale d’Agriculture de Meknès.

Funding

This study did not received an external funding.

Author information

Authors and Affiliations

Authors

Contributions

LD, NR, SE and RL: conceptualization, methodology, LD, NR, SE: writing—original draft. ED, NR, and SE: collection of the data. AT, BT, FG, SA and RL: supervision, writing—review and editing. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Abdessalem Tahiri or Rachid Lahlali.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doukkali, L., Radouane, N., Ezrari, S. et al. Lessons learnt from the fire blight epidemics: a mini review. Indian Phytopathology 75, 611–625 (2022). https://doi.org/10.1007/s42360-022-00509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-022-00509-5

Keywords

Navigation