Skip to main content

Advertisement

Log in

Crop disease management strategies for rainfed cropping systems under changing climate scenarios

  • Review Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Rainfed crop production systems are affected by climatic variability and climate change impacting farm productivity, profitability and thereby, livelihoods of less-endowed farming communities. Frequent occurrence of extreme weather events in selected agroecological regions of India could lead to regional food- and nutritional-security imbalances. The impact of climate change is being observed in crops and pathogens in the form of less-known diseases attaining major status, spread of the pathogens to new crops/areas, emergence of new virulent pathotypes/biotypes, change in virulence pattern in current pathotypes, changes in vector development patterns, host–pathogen–biocontrol interactions and overwintering or oversummering of pathogens/vectors. At ICAR-CRIDA, impacts of elevated CO2 and temperature on the pathogenicity of major soil-borne plant pathogens; biocontrol ability of Trichoderma, Pseudomonas; and abiotic stress tolerance ability of the biocontrol agents are being characterized. A holistic effective adaptation strategy must be focused on understanding of the influence of changing climate on host–pathogen–biocontrol tritrophic interactions, regular survey and surveillance, promote beneficial microbes with stress tolerance, develop robust forewarning systems, integrate novel disease management strategies at agro-ecosystem level, and enhance awareness among stakeholders on climate change impacts and adaptation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson P, Cunningham A, Patel N, Morales F, Epstein P, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Boag B, Crawford JW, Neilson R (1991) The effect of potential climatic changes on the geographical distribution of the plant-parasiticnematodes Xiphinema and Longidorusin Europe. Nematologica 37:312–323

    Article  Google Scholar 

  • Braga MR, Aidar MPM, Marabesi MA, de Godoy JRL (2006) Effects of elevated CO2 on the phytoalexin production of two soybean cultivars differing in the resistance to stem canker disease. Environ Exp Botany 58:85–92

    Article  CAS  Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in Southern Europe. Environmental constraints including climate change. Ann For Sci 53:347–358

    Article  Google Scholar 

  • Carvajal-Yepes M, Cardwell K, Nelson A, Garrett KA, Giovani B, Saunders D, Kamoun GO, Legg S, Verdier JP, Lessel V, Neher J, Day RA, Pardey R, Gullino P, Records ML, Bextine AR, Leach B, Staiger JE, Tohme S (2019) A global surveillance system for crop diseases. Science 364:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytol 159:733–742

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    Article  CAS  PubMed  Google Scholar 

  • Cheatham MR, Rouse MN, Esker PD, Ignacio Pradel SW, Raymundo R, Sparks AH, Forbes GA, Gordon TR, Garrett KA (2009) Beyond yield: plant disease in the context of ecosystem services. Phytopathology 99:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P (2010) Impact of climate change on fungal diseases of horticultural crops. In: Singh HP, Singh JP, Lal SS (eds) Challenges of climate change-Indian horticulture. Westville Publishing House, New Delhi, pp 167–176

    Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37:399–426

    Article  CAS  Google Scholar 

  • Deimel H, Hoffmann GM (1991) Detrimental effects of net blotch disease of barley plants caused by Drechslera teres (Sacc.) Shoemaker. J Plant Dis Protec 98:137–161

    CAS  Google Scholar 

  • Desai S, Shanker AK, Shanker C, Grover M, Rao MS, Prabhakar M, Prasad YG, Bhagyaraj DJ (2019) Climate change impacts on soil microflora and fauna. In: Prasada Rao GSLV, Rao VUM, Rao DVS (eds) Climate change and agriculture: causes, impacts and interventions. NIPA Publishers, New Delhi, pp 421–444

    Google Scholar 

  • Desai S, Dubey SC, Prasad RD (2020) Impacts of climate change on Fusarium species vis-à-vis adaptation strategies. Indian Phytopathol 73:593–603

    Article  Google Scholar 

  • Dixon GR (2012) Climate change-impact on crop growth and food production, and plant pathogens. Can J Plant Pathol 34:362–379

    Article  Google Scholar 

  • Dubey SC (2003) Influence of weather factors on the development of blast (Magnaporthe grisea) of rice in Jharkhand. Plant Dis Res 18:101–105

    Google Scholar 

  • Dubey SC (2005) Role of weather on development of Cercospora leaf spot (Cercospora arachidicola) ongroundnut (Arachis hypogaea). Indian J Agric Sci 75:232–234

    Google Scholar 

  • Dubey SC, Tripathi Aradhika, Upadhyay BK, Singh B (2012) Influence of weather and soil parameters on development of wet root rot in pulse crops and virulence analysis of Rhizoctonia solani isolates. J Agric Sci 4:191–205

    Google Scholar 

  • Eastburn DM, Degennaro MM, Delucia EH, Dermody O, McElrone AJ (2010) Elevated atmospheric carbon dioxide and ozone alter soybean diseases at Soy FACE. Glob Change Biol 16:320–330

    Article  Google Scholar 

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139. https://doi.org/10.1080/15427528.2014.865412

    Article  CAS  Google Scholar 

  • Evans N, Baierl A, Semenov MA, Gladders P, Fitt BDL (2008) Range and severity of aplant disease increased by global warming. J Royal Soc Interface 5:525–531

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A novel kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrer J (2003) Agroecosystem response to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Gamper H, Peter M, Jansa J, Luscher A, Hartwig UA, Leuchtmann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichmentin well-fertilized grass and legume monocultures. Glob Change Biol 10:189–199

    Article  Google Scholar 

  • Ghini R, Hamada E, Bettiol W (2008) Climate change and plant diseases. Sci Agric 65:98–107

    Article  Google Scholar 

  • Goria MM, Ghini R, Bettiol W (2013) Elevated atmospheric CO2 concentration increases rice blast severity. Trop Plant Pathol 38:253–257

    Article  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Groenewald JZ, Crous PW (2014) Genetic diversity in Macrophominaphaseolina, thecausal agent of charcoal rot. Phytopathol Mediterr 53:250–268

    Google Scholar 

  • Gouache D, Roche R, Pieri P, Bancal MO (2011) Evolutionof some pathosystems on wheat and vines. In: Brisson N, Levrault F (eds) Climate change, agriculture and forestsin France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010), part C (The crops), section B5 Health, ADEME, pp 113–126

  • Gupta S, Sharma D, Gupta M (2018) Climate change impact on plant diseases: opinion, trends and mitigation strategies. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture, 1st edn. John-Wiley, pp 41–56

    Google Scholar 

  • Hibberd JM, Whitbread R, Farrar JF (1996) Effect of elevated concentrations of CO2 on infection of barley by Erysiphe graminis. Physiol Mol Plant Pathol 48:37–53

    Article  CAS  Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, p 32

  • IWMI (2020) https://www.iwmi.cgiar.org/issues/rainfed-agriculture/summary/. Aaccessed 11 July 2020

  • Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathol 39:73–94

    Article  Google Scholar 

  • Juroszek P, Tiedemann A (2015) Linking plant disease models to climate change scenarios to project future risks of crop diseases: a review. J Plant Dis Prot 122:3–15

    Article  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13

    Article  CAS  Google Scholar 

  • Kobayashi T, Ishiguro K, Nakajima T, Kim HY, Okada M, Kobayashi K (2006) Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology 96:425–431

    Article  CAS  PubMed  Google Scholar 

  • Koo T, Hing S, Yun S (2016) Changes in the aggressiveness and fecundity of hot pepper anthracnose pathogen (Colletotricum acutatum) under elevated CO2 and temperature over 100 infection cycles. Plant Pathol J 32:260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Dubey SC (2002) Relationship of disease intensity with weather and management of web blight of winged bean. Indian Phytopathol 55:152–157

    Google Scholar 

  • Lake JA, Wade RN (2009) Plant - pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60:3123–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RP (2015) Soil health paradigms and implications for disease management. Annu Rev Phytopathol 53:13–24. https://doi.org/10.1146/annurev-phyto-080614-120357

    Article  CAS  Google Scholar 

  • Lesnaw JA, Ghabrial SA (2000) Tulip breaking: past, present, and future. Plant Dis 84:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Li X, Sun Z, Shao S, Zhang S, Ahammed GJ, Zhang G, Jiang Y, Zhou J, Yu J, Shi K (2014) Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany 66:307–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden LV, Hughes G, Bosch FV (2007) The study of plant disease epidemics. TheAmerican Phytopathological Society Press, St Paul, MN

    Google Scholar 

  • Manici LM, Bregaglio S, Fumagalli D, Donatelli M (2014) Modelling soil borne fungal pathogens of arable crops under climate change. Int J Biometeorol 58:2071–2083

    Article  CAS  PubMed  Google Scholar 

  • Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006) Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection withPotato virus Y. Plant Cell Environ 29:126–37

    Article  CAS  PubMed  Google Scholar 

  • McElrone AJ, Reid CD, Hoye KA, Hart E, Jackson RB (2005) Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob Change Biol 11:1828–1836

    Article  Google Scholar 

  • Melloy P, Hollaway G, Luck J, Norton R, Aitken E, Chakraborty S (2010) Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Glob Change Biol 16:3363–3373

    Article  Google Scholar 

  • Milanović M, Knapp S, Pyšek P, Kühn I (2020) Linking traits of invasive plants with ecosystem services and disservices. Ecosyst Serv 42:101072. https://doi.org/10.1016/j.ecoser.2020.101072

    Article  Google Scholar 

  • Mina U, Dubey SC (2010) Effect of environmental variables on development of Fusarium wilt in chickpea (Cicer arietinum) cultivars. Indian J Agric Sci 80:231–234

    Google Scholar 

  • Mina U, Bhatia A, Dubey SC (2012) Impact of ozone and carbon dioxide on wilt disease development in chickpea. Int J Environ Eng Manag 3:373–376

    Google Scholar 

  • Minato N, Sok S, Chen S, Delaquis E, Phirun I, Le VX, Burra DD, Newby JC, Wyckhuys KAG, de Haan S (2019) Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One 14:e0212780. https://doi.org/10.1371/journal.pone.0212780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nally D (2008) “That coming storm”: The Irish poor law, colonial biopolitics, and the great famine. Ann Assoc Am Geogr 98:714–741

    Article  Google Scholar 

  • Page K, Dang Y, Dalal R (2013) Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems. Australas Plant Pathol 42:363–377

    Article  Google Scholar 

  • Pangga R, Hanan J, Chakraborty S (2011) Pathogen dynamics in acrop canopy and their evolution under changing climate. Plant Pathol 60:70–81

    Article  Google Scholar 

  • Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43:1902–1914

    Article  CAS  Google Scholar 

  • Reidsma P, Wolf J, Kanellopoulos A, Schaap BF, Mandryk M, Verhagen J, Ittersum MK (2015) Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ Res Lett 10:045004

    Article  Google Scholar 

  • Semenov M (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6:343–350

    Article  PubMed  Google Scholar 

  • Siebold M, Tiedemann A (2012) Potential effects of global warming on oil seed rape pathogens in Northern Germany. Fungal Ecol 5:62–72

    Article  Google Scholar 

  • Singh BP, Dua VK, Govindakrishnan PM, Sharma S (2013) Impact of climate change onpotato. In: Singh HP et al (eds) Climate-resilient horticulture:adaptation and mitigation strategies. Springer, India, pp 125–135

    Chapter  Google Scholar 

  • Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M (2019) Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Nat Sci Rep 9:5577. https://doi.org/10.1038/s41598-019-41463-z

    Article  CAS  Google Scholar 

  • Strengbom J, Reich P (2006) Elevated CO2 and increased N supply reduce leaf disease and related photosynthetic impacts on Solidago rigida. Oecologia 149:519–525

    Article  PubMed  Google Scholar 

  • Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133–149

    Article  Google Scholar 

  • Tamada T (2002) Beet necrotic yellow vein virus. CMI/AAB description of plant viruses, No. 391. Wellesbourne: association of applied biologists

  • Thompson SE, Levin S, Rodriquez-Iturbe I (2014) Rainfall and temperature changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the Southwestern USA under climate change scenarios. Glob Change Biol 20:1299–1312

    Article  Google Scholar 

  • Tiedemann A, Firsching KH (2000) Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ Pollut 108:357–363

    Article  CAS  Google Scholar 

  • Waalwijk C, Kastelein P, de Vries PhM, Kerényi Z, van der Lee TAJ, Hesselink T, Köhl J, Kema GHJ (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    Article  CAS  Google Scholar 

  • Wakelin S, Gomez-Gallego M, Jones EE (2018) Climate change induced drought impacts on plant diseases in New Zealand. Australas Plant Pathol 47:101–114

    Article  Google Scholar 

  • War AR, Taggar GK, War MY, Hussain B (2016) Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. Int J Clin Biol Sci 1:16–29

    Google Scholar 

  • Watson A, Ghosh S, Williams M, Cuddy WS, Simmonds J, Rey MD, Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski N, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Loeschenberger F, Miedaner T, Ostergard H, van Bueren ETL (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346

    Article  Google Scholar 

  • Yin K, Qiu JL (2019) Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc B 374:20180322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suseelendra Desai.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, S., Dubey, S.C., Taduri, M. et al. Crop disease management strategies for rainfed cropping systems under changing climate scenarios. Indian Phytopathology 74, 485–494 (2021). https://doi.org/10.1007/s42360-021-00339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00339-x

Keywords

Navigation