Skip to main content
Log in

β-Ga2O3 Schottky Barrier Diodes with Near-Zero Turn-on Voltage and Breakdown Voltage over 3.6 kV

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Lateral Schottky barrier diodes (SBD) were fabricated on a molecular beam epitaxy (MBE) grown, Si-doped β-Ga2O3 wafer measuring 1 cm by 1.5 cm. These devices featured varying anode to cathode distances and included anode connected field plate structures. A device with a 25 μm anode to cathode spacing exhibited a high breakdown voltage exceeding 3.6 kV. A smaller device with a 10 μm anode to cathode spacing demonstrated a Ron,sp (specific on resistance) of 0.1508 Ω·cm2 and a power figure of merit of 18.87 MW/cm2. The incorporation of titanium, characterized by a relatively low work function, as the Schottky contact enabled the achievement of a very low turn-on voltage and a sub-60 mV/dec subthreshold swing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012). https://doi.org/10.1063/1.3674287

    Article  CAS  Google Scholar 

  2. M. Higashiwaki, A. Kuramata, H. Murakami, Y. Kumagai, J. Phys. D: Appl. Phys. 50, 333002 (2017). https://doi.org/10.1088/1361-6463/aa7aff

    Article  CAS  Google Scholar 

  3. H.H. Tippins, Phys. Rev. 140, A316 (1965) https://doi.org/10.1103/PhysRev.140.A316

  4. M. Baldini, Z. Galazka, G. Wagner, Mater. Sci. Semiconduct. Process. 78, 132 (2018). https://doi.org/10.1016/j.mssp.2017.10.040

    Article  CAS  Google Scholar 

  5. M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 103, 123511 (2013). https://doi.org/10.1063/1.4821858

    Article  CAS  Google Scholar 

  6. M. Higashiwaki, G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018). https://doi.org/10.1063/1.5017845]

    Article  Google Scholar 

  7. D. Khan, D. Gajula, S. Okur, G.S. Tompa, G. Koley, ECS J. Solid State Sci. Technol. 8, Q106 (2019). https://doi.org/10.1149/2.0211906jss

    Article  CAS  Google Scholar 

  8. Z. Hu, H. Zhou, Q. Feng, J. Zhang, C. Zhang, K. Dang, Y. Cai, Z. Feng, Y. Gao, X. Kang, Y. Hao, IEEE Electron. Device Lett. 39, 1564 (2018). https://doi.org/10.1109/LED.2018.2868444

    Article  CAS  Google Scholar 

  9. Y. Xu, X. Chen, L. Cheng, F.-F. Ren, J. Zhou, S. Bai, H. Lu, S. Gu, R. Zhang, Y. Zheng, J. Ye, Chin. Phys. B 28, 038503 (2019). https://doi.org/10.1088/1674-1056/28/3/038503

    Article  CAS  Google Scholar 

  10. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, IEEE Electron. Device Lett. 34, 493 (2013). https://doi.org/10.1109/LED.2013.2244057

    Article  CAS  Google Scholar 

  11. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 110, 103506 (2017). https://doi.org/10.1063/1.4977857

    Article  CAS  Google Scholar 

  12. Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, M. Liu, Appl. Phys. Lett. 110, 093503 (2017). https://doi.org/10.1063/1.4977766

    Article  CAS  Google Scholar 

  13. J. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang, J. Kim, A. Kuramata, Appl. Phys. Lett. 110, 192101 (2017). https://doi.org/10.1063/1.4983203

    Article  CAS  Google Scholar 

  14. J. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang, A. Kuramata, IEEE Electron. Device Lett. 38, 906 (2017). https://doi.org/10.1109/LED.2017.2703609

    Article  CAS  Google Scholar 

  15. C.-H. Lin, Y. Yuda, M.H. Wong, M. Sato, N. Takekawa, K. Konishi, T. Watahiki, M. Yamamuka, H. Murakami, Y. Kumagai, M. Higashiwaki, IEEE Electron. Device Lett. 40, 1487 (2019). https://doi.org/10.1109/LED.2019.2927790

    Article  CAS  Google Scholar 

  16. K. Sasaki, D. Wakimoto, Q.T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, S. Yamakoshi, IEEE Electron. Device Lett. 38, 783 (2017). https://doi.org/10.1109/LED.2017.2696986

    Article  CAS  Google Scholar 

  17. W. Li, K. Nomoto, Z. Hu, D. Jena, H.G. Xing, Appl. Phys. Express. 12, 061007 (2019). https://doi.org/10.7567/1882-0786/ab206c

    Article  CAS  Google Scholar 

  18. E. Swinnich, M.N. Hasan, K. Zeng, Y. Dove, U. Singisetti, B. Mazumder, J.-H. Seo, Adv. Electron. Mater. 5, 1800714 (2019). https://doi.org/10.1002/aelm.201800714

    Article  CAS  Google Scholar 

  19. T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express. 8, 031101 (2015). https://doi.org/10.7567/APEX.8.031101

    Article  CAS  Google Scholar 

  20. A.M. Armstrong, M.H. Crawford, A. Jayawardena, A. Ahyi, S. Dhar, J. Appl. Phys. 119, 103102 (2016). https://doi.org/10.1063/1.4943261

    Article  CAS  Google Scholar 

  21. S. Ahn, F. Ren, L. Yuan, S.J. Pearton, A. Kuramata, ECS J. Solid State Sci. Technol. 6, 68 (2017). https://doi.org/10.1149/2.0291701jss

    Article  CAS  Google Scholar 

  22. E. Farzana, Z. Zhang, P.K. Paul, A.R. Arehart, S.A. Ringel, Appl. Phys. Lett. 110, 202102 (2017). https://doi.org/10.1063/1.4983610

    Article  CAS  Google Scholar 

  23. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Appl. Phys. Lett. 108, 133503 (2016). https://doi.org/10.1063/1.4945267

    Article  CAS  Google Scholar 

  24. J.K. Mun, K. Cho, W. Chang, H.-W. Jung, J. Do, ECS J. Solid State Sci. Technol. 8, Q3079 (2019). https://doi.org/10.1149/2.0151907jss

    Article  CAS  Google Scholar 

  25. J.E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J.S. Speck, Semicond. Sci. Technol. 31, 065006 (2016). https://doi.org/10.1088/0268-1242/31/6/065006

    Article  CAS  Google Scholar 

  26. L. Zhang, A. Verma, H. Xing, D. Jena (eds.), Jpn. J. Appl. Phys. 56, 030304 (2017) https://doi.org/10.7567/JJAP.56.030304

  27. J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, A. Kuramata, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 35, 031205 (2017) https://doi.org/10.1116/1.4982714

  28. K.J. Cho, J.-K. Mun, W. Chang, H.-W. Jung, J. Korean Inst. Electr. Electron. Mater. 33, 78 (2020). https://doi.org/10.4313/JKEM.2020.33.1.78

    Article  Google Scholar 

  29. J. Yang, F. Ren, M. Tadjer, S.J. Pearton, A. Kuramata, AIP Adv. 8, 055026 (2018). https://doi.org/10.1063/1.5034444

    Article  CAS  Google Scholar 

  30. N. Allen, M. Xiao, X. Yan, K. Sasaki, M.J. Tadjer, J. Ma, R. Zhang, H. Wang, Y. Zhang, IEEE Electron. Device Lett. 40, 1399 (2019). https://doi.org/10.1109/LED.2019.2931697

    Article  CAS  Google Scholar 

  31. D.E. Eastman, Phys. Rev. B 2, 1 (1970). https://doi.org/10.1103/PhysRevB.2.1

    Article  Google Scholar 

  32. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101, 132106 (2012). https://doi.org/10.1063/1.4755770

    Article  CAS  Google Scholar 

  33. C.Y. Chang, S.M. Sze, Solid State Electron. 13, 727 (1970). https://doi.org/10.1016/0038-1101(70)90060-2

    Article  Google Scholar 

  34. Y.-W. Huan, S.-M. Sun, C.-J. Gu, W.-J. Liu, S.-J. Ding, H.-Y. Yu, C.-T. Xia, D.W. Zhang, Nanoscale Res. Lett. 13, 246 (2018). https://doi.org/10.1186/s11671-018-2667-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo, H.-Y. Cha, IEEE Electron. Device Lett. 34, 214 (2013). https://doi.org/10.1109/LED.2012.2235403

    Article  CAS  Google Scholar 

  36. H.-S. Lee, D.Y. Jung, Y. Park, J. Na, H.-G. Jang, H.-S. Lee, C.-H. Jun, J. Park, S.-O. Ryu, S.C. Ko, E.S. Nam, IEEE Electron. Device Lett. 36, 1132 (2015). https://doi.org/10.1109/LED.2015.2475178

    Article  CAS  Google Scholar 

  37. J. Yang, F. Ren, M. Tadjer, S.J. Pearton, A. Kuramata, ECS J. Solid State Sci. Technol. 7, Q92 (2018). https://doi.org/10.1149/2.0241805jss

    Article  CAS  Google Scholar 

  38. K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshi, Appl. Phys. Express. 5, 035502 (2012). https://doi.org/10.1143/APEX.5.035502

    Article  CAS  Google Scholar 

  39. Z. Hu, H. Zhou, K. Dang, Y. Cai, Z. Feng, Y.G. O, Q. Feng, J. Zhang, Y. Hao, IEEE J. Electron. Devices Soc. 6, 815 (2018). https://doi.org/10.1109/JEDS.2018.2853615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “The Strategic Core Material Development Program (No. 10080736)” of the Ministry of Trade, Industry & Energy (MOTIE) and the National Research Foundation (NRF) funded by the Ministry of Education (No. NRF-2020M3H4A3081798), Korea.

Funding

This work was funded by “The Strategic Core Material Development Program (No. 10080736)” of the Ministry of Trade, Industry & Energy (MOTIE) and the National Research Foundation (NRF) funded by the Ministry of Education (No. NRF-2020M3H4A3081798), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyoung Mun.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, K.J., Chang, W., Lee, HK. et al. β-Ga2O3 Schottky Barrier Diodes with Near-Zero Turn-on Voltage and Breakdown Voltage over 3.6 kV. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00529-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00529-0

Keywords

Navigation