Skip to main content
Log in

Deposited 2D/3D Perovskite Heterojunctions Though Vapor-Assisted Solution Process for Restraining Intermixing Between the Two Phases

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional/three-dimensional (2D/3D) hierarchical structure has attracted extensively attention in recent years due to their stability and the enhanced open-circuit voltage of perovskite solar cells. However, the solution processed thin 2D perovskite layers on the surface of 3D perovskites would lead to undesirable intermixing between the two phases, impeded carrier transport. Here, we present a novel approach for fabricating 2D perovskite on 3D perovskite using vapor-assisted solution deposition. Unlike what is normally observed in solution-processed 3D/2D systems, a flat interface formed in the 2D/3D bilayer heterostructure. The vapor-deposited 2D perovskite capping layer promotes efficient electron and hole separation processes and significantly restrain non-radiative charge recombination. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Relevant research data are included in the text of the work.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2, 7 (2012)

    Article  Google Scholar 

  3. M.-G. La-Placa, L. Gil-Escrig, D. Guo, F. Palazon, T.J. Savenije, M. Sessolo, H.J. Bolink, Vacuum-deposited 2D/3D Perovskite Heterojunctions. ACS Energy Lett. 4, 2893–2901 (2019)

    Article  CAS  Google Scholar 

  4. T. Zhang, M. Long, M. Qin, X. Lu, S. Chen, F. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, Z. Chen, W. Xu, P. Liu, W. Xie, J.B. Xu, Stable and efficient 3D–2D Perovskite-Perovskite planar heterojunction solar cell without organic hole transport layer. Joule 2, 2706–2721 (2018)

    Article  CAS  Google Scholar 

  5. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang, G. Xing, Surface passivation using 2D perovskites toward efficient and stable Perovskite Solar cells. Adv Mater 34, e2105635 (2022)

    Article  PubMed  Google Scholar 

  7. S.-H. Turren-Cruz, A. Hagfeldt, M.J.S. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Liu, S. Akin, L. Pan, R. Uchida, N. Arora, J.V. Milić, A. Hinderhofer, F. Schreiber, A.R. Uhl, S.M. Zakeeruddin, A. Hagfeldt, Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Min, M. Kim, S.-U. Lee, H. Kim, G. Kim, K. Choi, J.H. Lee, S.I.J.S. Seok, Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu, J. Bing, D.S. Lee, J. Kim, T. Wu, N.J.S. Takamure, Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. P. Chen, Y. Bai, S. Wang, M. Lyu, J.H. Yun, L. Wang, In situ growth of 2D Perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018)

    Article  Google Scholar 

  12. J. Wang, L. Liu, S. Chen, G. Ran, W. Zhang, M. Zhao, C. Zhao, F. Lu, T. Jiu, Y. Li, Growth of 2D passivation layer in FAPbI3 perovskite solar cells for high open-circuit voltage. Nano Today 42, 101357 (2022)

    Article  CAS  Google Scholar 

  13. S.H. Kareem, M.H. Elewi, A.M. Naji, D.S. Ahmed, K.A. Mohammed, Efficient and stable pure α-phase FAPbI3 perovskite solar cells with a dual engineering strategy: additive and dimensional engineering approaches. Chem. Eng. J. 443, 136469 (2022)

    Article  Google Scholar 

  14. A.H. Proppe, A. Johnston, S. Teale, A. Mahata, R. Quintero-Bermudez, E.H. Jung, L. Grater, T. Cui, T. Filleter, C.Y. Kim, S.O. Kelley, F. De Angelis, E.H. Sargent, Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nat. Commun. 12, 3472 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen, D. Walter, H.T. Nguyen, N. Mozaffari, G.D. Tabi, K.R. Catchpole, K.J. Weber, T.P. White, Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D‐3D perovskite solar cells: a review. Adv Funct Mater 32, 2009164 (2021)

    Article  Google Scholar 

  16. N. Klipfel, M.H.P.U. Haris, S. Kazim, A. Sutanto, N. Shibayama, H. Kanda, A.M. Asiri, C. Momblona, S. Ahmad, M.K. Nazeeruddin, Structural and photo physical investigation of single-source evaporation of CsFAPbI3 and FAPbI3 perovskite thin films. J. Mater. Chem. C 10, 10075–10082 (2022)

    Article  CAS  Google Scholar 

  17. P. Cui, D. Wei, J. Ji, H. Huang, E. Jia, S. Dou, T. Wang, W. Wang, M. Li, Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019)

    Article  CAS  Google Scholar 

  18. Y. Ren, N. Zhang, Q. Wang, J. Zhu, C. Li, Restricting δ-phase transformation of HC(NH2)2PbI3via iodine-vacancy filling for efficient perovskite solar cells. Sci. China Mater. 63, 1015–1023 (2020)

    Article  CAS  Google Scholar 

  19. Y. Ren, J. Chen, D. Ji, Y. Sun, C. Li, Improve the quality of HC(NH2)2PbIxBr3–x through iodine vacancy filling for stable mixed perovskite solar cells. Chem. Eng. J. 384, 123273 (2020)

    Article  CAS  Google Scholar 

  20. S. Zhao, M. Qin, H. Wang, J. Xie, F. Xie, J. Chen, X. Lu, K. Yan, J. Xu, Cascade type-II 2D/3D perovskite heterojunctions for enhanced stability and photovoltaic efficiency. Solar RRL 4, 2000282 (2020)

    Article  CAS  Google Scholar 

  21. Y. Ren, Y. Hao, N. Zhang, Z. Arain, M. Mateen, Y. Sun, P. Shi, M. Cai, S. Dai, Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all-inorganic solar cell. Chem. Eng.J. 392, 123805 (2020)

    Article  CAS  Google Scholar 

  22. G. Li, J. Song, J. Wu, Y. Xu, C. Deng, Z. Song, X. Wang, Y. Du, Q. Chen, R. Li, W. Sun, Z. Lan, Surface defect passivation by 1,8-Naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells. Chem. Eng. J. 449, 137806 (2022)

    Article  CAS  Google Scholar 

  23. J. Hu, C. Wang, S. Qiu, Y. Zhao, E. Gu, L. Zeng, Y. Yang, C. Li, X. Liu, K. Forberich, C.J. Brabec, M.K. Nazeeruddin, Y. Mai, F. Guo, Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells. Adv. Energy Mater. 10, 2000173 (2020)

    Article  CAS  Google Scholar 

  24. Y.-K. Ren, D. Li, J. Chen, X. Guo, C. He, Z. Li, X.-T.J. An, Enhanced crystallization in CsPbBr3 all-inorganic perovskite via advanced nucleation method. J. Mater. Chem. C 10, 3429–3434 (2022)

    Article  CAS  Google Scholar 

  25. Y. Ren, N. Zhang, Z. Arain, M. Mateen, J. Chen, Y. Sun, Z. Li, Polymer-induced lattice expansion leads to all-inorganic CsPbBr 3 perovskite solar cells with reduced trap density. J Power Sources 475, 227686 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Hebei Province of China (E2021210114), Foundation of Hebei Province Department of Human Resources and social security of China (C20220325), the Natural Science Foundation of Hebei Province (F2021208014) and Science and Technology Project of Hebei Education Department (QN2021063).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, material preparation, data collection, analysis, and writing the first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoquan Nie or Xing Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Ren, Y., Nie, G. et al. Deposited 2D/3D Perovskite Heterojunctions Though Vapor-Assisted Solution Process for Restraining Intermixing Between the Two Phases. Trans. Electr. Electron. Mater. 25, 187–193 (2024). https://doi.org/10.1007/s42341-023-00498-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00498-w

Keywords

Navigation