Skip to main content
Log in

Surface Modification and Theoretical Investigation by Simulation for Light Trapping in Silicon Heterojunction Solar Cells

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The 25% conversion efficiency of silicon solar cells is attributed to monocrystalline silicon wafers. These wafers have been utilized in the development of heterojunction with intrinsic thin-layer solar cells. To harness electrical power efficiently from a solar cell, it is essential not only to enhance its performance but also to significantly reduce its production costs. It is projected that the thickness of the Si wafer will gradually approach a minimum value of approximately 100 μm in the future. As a result, reducing the as-cut wafer thickness can lead to a more efficient utilization of silicon. In this paper, we present an approach for surface modification using a thin wafer, specifically for the application of rear-emitter silicon heterojunction (RE-SHJ) solar cells. RE-SHJ solar cells often experience a reduction in current density due to optical losses, such as the absorption in each layer and reflections on both the front and rear sides. For the application of RE-SHJ solar cells, we fabricated different pyramid sizes using a texturing solution after polishing the rear surface. The surface modifications in this study incorporated both front-side texturing and rear-side polishing. These modifications can contribute to enhanced efficiency, even with a thin wafer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. http://taiyangnews.info/technology/25-2-efficiency-for-gs-solar-hjt-solar-cell/

  2. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4(1), 96–99 (2014)

    Article  Google Scholar 

  3. W. Duan, K. Bittkau, A. Lambertz, K. Qui, Z. Yao, P. Steuter, D. Qui, U. Rau, K. Ding, Improved infrared light management with transparent conductive oxide/amorphous silicon back reflector in high-efficiency silicon heterojunction solar cells. Sol. RRL 5(1), 2000576 (2021)

    Article  CAS  Google Scholar 

  4. H. Sai, Y. Sato, T. Oku, T. Matsui, Very thin crystalline silicon cells: a way to improve the photovoltaic performance at elevated temperatures. Prog. Photovolt. Res. Appl. 29, 1093 (2021)

    Article  CAS  Google Scholar 

  5. H. Sai, T. Oku, Y. Sato, M. Tanabe, T. Matsui, K. Matsubara, Potential of very thin and high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 27, 1061 (2019)

    Article  CAS  Google Scholar 

  6. H. Sai, H. Umishio, T. Matsui, Very thin (56 µm) silicon heterojunction solar cells with an efficiency of 23.3% and an open-circuit voltage of 754 mV. Sol. RRL 5, 2100634 (2021)

    Article  CAS  Google Scholar 

  7. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells. 95, 18–21 (2011)

    Article  CAS  Google Scholar 

  8. U. Chime, L. Wolf, V. Buga, D. Weigand, A. Gad, J. Köhler, A. Lambertz, W. Duan, K. Ding, T. Merdzhanova, U. Rau, O. Astakhov, How thin practical silicon heterojunction solar cells could be? Experimental study under 1 sun and under indoor illumination. Sol. RRL 6, 2100594 (2022)

    Article  CAS  Google Scholar 

  9. A. Cruz, D. Erfurt, P. Wagner, A.B. Morales-Vilches, F. Ruske, R. Schlatmann, B. Stannowski, Optoelectrical analysis of TCO+ silicon oxide double layers at the front and rear side of silicon heterojunction solar cells. Sol Energy Mater. Sol. Cells 236, 111493 (2022)

    Article  CAS  Google Scholar 

  10. A. Razzaq, T.G. Allen, W. Liu, Z. Liu, S.D. Wolf, Silicon heterojunction solar cells: techno-economic assessment and opportunities. Joule 6(3), 514 (2022)

    Article  CAS  Google Scholar 

  11. W. Duan, A. Lambertz, K. Bittkau, D. Qui, K. Qui, U. Rau, K. Ding, A route towards high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 30, 384 (2022)

    Article  CAS  Google Scholar 

  12. M. Taguchi, Review-development history of high efficiency silicon heterojunction solar cell: from discovery to practical use. ECS J. Solid State Sci. Technol. 10, 025002 (2021)

    Article  Google Scholar 

  13. W. Long, S. Yin, F. Peng, M. Yang, L. Fang, X. Ru, M. Qu, H. Lin, X. Xu, On the limiting efficiency for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 231, 111291 (2021)

    Article  CAS  Google Scholar 

  14. M. Ju, K. Mallem, S. Dutta, N. Balaji, D. Oh, E.-C. Cho, Y.H. Cho, Y. Kim, J. Yi, Influence of small size pyramid texturing on contact shading loss and performance analysis of Ag-screen printed mono crystalline silicon solar cells. Mater. Sci. Semicond. Proc. 85, 68–75 (2018)

    Article  CAS  Google Scholar 

  15. J. Yang, H. Shen, L. Sun, Nanostructure-induced fast texturization of mono-crystalline silicon in low-concentration alkaline solution. Mater. Sci. Semicond. Proc. 94, 1–8 (2019)

    Article  CAS  Google Scholar 

  16. A. Abdulkadir, A.A. Aziz, M.Z. Pakhuruddin, Impact of micro-texturization on hybrid micro/nano-textured surface for enhanced broadband light absorption in crystalline silicon for application in photovoltaics. Mater. Sci. Semicond. Proc. 105, 104728 (2020)

    Article  CAS  Google Scholar 

  17. A.K. Dikshit, N.C. Mandal, S. Bose, N. Mukherjee, P. Chakrabarti, Optimization of back ITO layer as the sandwiched reflector for exploiting longer wavelength lights in thin and flexible (30 µm) single junction c-Si solar cells. Sol. Energy 193, 293–302 (2019)

    Article  Google Scholar 

  18. P. Kowalczewski, L.C. Andreani, Towards the efficiency limits of silicon solar cells: How thin is too thin? Sol. Energy Mater. Sol. Cells 143, 260–268 (2015)

    Article  CAS  Google Scholar 

  19. M. Ju, N. Balaji, Y.-J. Lee, C. Park, K. Song, J. Choi, J. Yi, Novel vapor texturing method for EFG silicon solar cell applications. Sol. Energy Mater. Sol. Cells 107, 366–372 (2012)

    Article  CAS  Google Scholar 

  20. B. Schwartz, H. Robbins, Chemical etching of silicon: I the system, and. J. Electrochem. Soc. 123(12), 1903 (1976)

    Article  CAS  Google Scholar 

  21. R. Luttge, Microfabrication for Industrial Applications: A Volume in Micro and Nano Technologies (Elsevier, Amsterdam, 2011)

    Google Scholar 

  22. M. Ju, N. Balaji, C. Park, H.T.T. Nguyen, J. Cui, D. Oh, M. Jeon, J. Kang, G. Shim, J. Yi, The effect of small pyramid texturing on the enhanced passivation and efficiency of single c-Si solar cells. RSC Adv. 6, 49831–49838 (2016)

    Article  Google Scholar 

  23. R. Varache, C. Leendertz, M.E. Gueunier-Farret, J. Haschke, D. Muñoz, L. Korte, Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol. Energy Mater. Sol. Cells 141, 14–23 (2015)

    Article  CAS  Google Scholar 

  24. R. Stangl, A. Froitzheim, M. Schmidt, W. Fuhs, Design criteria for amorphous/crystalline silicon heterojunction solar cells-a simulation study, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003) p. 1005

  25. A. Froitzheim, R. Stangl, L. Elstner, M. Schmidt, W. Fuhs, Interface recombination in amorphous/crystalline silicon solar cell, a simulation study, in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, 2002) p. 1238

  26. L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation. Phys. Stat. Sol. A 205(5), 1215–1221 (2008)

    CAS  Google Scholar 

  27. https://www.el-cat.com/silicon-properties.htm

  28. http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

  29. A.H.T. Le, V.A. Dao, D.P. Pham, S. Kim, S. Dutta, C.P.T. Nguyen, Y. Lee, Y. Kim, J. Yi, Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes. Sol. Energy Mater. Sol. Cells 192, 36–43 (2019)

    Article  CAS  Google Scholar 

  30. https://en.wikipedia.org/wiki/Amorphous_silicon

  31. Y. Zhang, C. Yu, M. Yang, H. Yan, J. Zhang, and X. Xu, Effects of n-type hydrogenated microcrystalline silicon oxide film on performance of a-Si/c-Si heterojunction solar cells, in IEEE 42nd Photovoltaic Specialist Conference (PVSC) (New Orleans, Louisiana, 2015), p. 1982

  32. X. Yang, J. Chen, W. Liu, F. Li, Y. Sun, Single-side heterojunction solar cell with microcrystalline silicon oxide emitter and diffused back surface field. Phys. Status Solidi A 214, 1700193 (2017)

    Article  Google Scholar 

  33. H. Park, M. Khokhar, E. Cho, M. Ju, Y. Kim, S. Kim, J. Yi, Computer modeling of the front surface field layer on the performance of the rear-emitter silicon heterojunction solar cell with 25% efficiency. Optik 205, 164011 (2020)

    Article  CAS  Google Scholar 

  34. F. Wang, Y. Gao, Z. Pang, L. Yang, J. Yang, Insights into the role of the interface defects density and the bandgap of the back surface field for efficient p-type silicon heterojunction solar cells. RSC Adv. 7, 26776 (2017)

    Article  CAS  Google Scholar 

  35. F. Meng, J. Liu, L. Shen, J. Shi, A. Han, L. Zhang, Y. Liu, J. Yu, J. Zhang, R. Zhou, Z. Liu, Front. Energy 11(1), 78–84 (2017)

    Article  Google Scholar 

  36. X. Wang, Z. Liu, Z. Yang, J. He, X. Yang, T. Yu, P. Gao, J. Ye, Heterojunction Hybrid Solar cells by formation of conformal contacts between PEDOT:PSS and Periodic Silicon Nanopyramid arrays. Small. 14, 1704493 (2018)

    Article  Google Scholar 

  37. Y. Kim, S. Jung, M. Ju, K. Ryu, J. Park, H. Choi, D. Yang, Y. Lee, J. Yi, The effect of rear surface polishing to the performance of thin crystalline silicon solar cells. Sol. Energy 85, 1085–1090 (2011)

    Article  CAS  Google Scholar 

  38. H. Park, M.H. Shin, S.M. Iftiquar, S.Q. Hussain, M. Ju, Y.K. Kim, E.-C. Cho, J. Yi, The light-trapping effect in various textured cover glass for enhancing the current density in silicon heterojunction solar cells. Opt. Commun. 467, 125657 (2020)

    Article  CAS  Google Scholar 

  39. J.-T. Lin, C.-C. Lai, C.-T. Lee, Y.-Y. Hu, K.-Y. Ho, S.W. Haga, A high-efficiency HIT solar cell with pillar texturing. IEEE J. Photovolt. 8(3), 669–675 (2018)

    Article  Google Scholar 

  40. K. Nakamura, M. Aoki, I. Sumita, H. Sato, Y. Kumagai, Y. Kawata, Y. Ohshita, Texturization control for fabrication of high efficiency mono crystalline Si solar cell, in Proceedings of 39th IEEE Photovoltaic Special Conference (2013) pp. 1184–1192

  41. S.C. Baker-Finch, K.R. Mclntosh, Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells. Prog. Photovolt. Res. Appl. 21, 960–971 (2013)

    Article  Google Scholar 

  42. J.D. Hylton, A.R. Burgers, W.C. Sinke, Alkaline etching for reflectance reduction in multicrystalline silicon solar cells. J. Electrochem. Soc. 151(6), G408–G427 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Initiative for fostering University of Research and Innovation Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (Nos. NRF2021M3H1A104892211, 2021R1A2C2012649).

Author information

Authors and Affiliations

Authors

Contributions

HGP: Conceptualization, Validation, Investigation, MS: Methodology, YK: Software, J-HL: Supervision, MJ: Methodology, Data Curation, and JY: Supervision.

Corresponding authors

Correspondence to Hyeong Gi Park or Junsin Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.G., Shin, M., Kim, YK. et al. Surface Modification and Theoretical Investigation by Simulation for Light Trapping in Silicon Heterojunction Solar Cells. Trans. Electr. Electron. Mater. 24, 579–588 (2023). https://doi.org/10.1007/s42341-023-00479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00479-z

Keywords

Navigation