Skip to main content
Log in

Dimensional Effect on Analog/RF Performance of Dual Material Gate Junctionless FinFET at 7 nm Technology Node

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Fully Depleted Silicon On Insulator (FDSOI) structures are present-era technology as it has enhanced control over Short Channel Effects in the sub-nanometre regime. This paper studies the analog and radio frequency performance of junctionless FinFET with dual material gate (DMG JLFinFET) based on FDSOI for low power applications. We extracted analog and radio frequency parameters with the variation of fin height (FH = 10 nm to 30 nm) and fin width (FW = 46 nm). The parameters like transconductance (gm), transconductance generation factor, cut-off frequency (fT), intrinsic delay (τ), gate capacitance (Cgg), gate to source capacitance (Cgs), gate to drain capacitance (Cgd), and transconductance frequency product, gain bandwidth product are calculated. At FH = 6 nm all the parameters are increased except time delay which was small decrement. Similarly for FW also all the parameters are improved with increment of fin width except time delay. In contempt Cgd and Cgg are less impact on dimensional variation. From this study it reveals that, in FinFET design, designers have to consider dimensional variations in Anlog/RF parameters and FinFET is suitable candidate for nano scale low power Anlog/RF applications. In this work all these simulations are carried out by Cogenda Visual TCAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. J.P. Colinge, C.W. Lee, A. Afzalian et al., Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  CAS  Google Scholar 

  2. J.P. Duarte, S.J. Choi, M.D.Y.K. IlChoi, Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron Device Lett. 32, 704–706 (2011). https://doi.org/10.1109/LED.2011.2127441

    Article  Google Scholar 

  3. J.M. Sallese, N. Chevillon, C. Lallement et al., Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Devices 58, 2628–2637 (2011). https://doi.org/10.1109/TED.2011.2156413

    Article  CAS  Google Scholar 

  4. C. Zhang, W. Choi, P. Mohseni, X. Li, InAs nanowire gate-all-around MOSFETs by heterogeneous planar VLS growth. InAs nanowire gate-all-around MOSFETs by heterogeneous planar VLS growth (2015)

  5. R. Kusuma, V.H.R. Talari (2021) Performance analysis of FinFET using gate stack and workfunction engineering in 14nm technology. In: 2021 2nd International conference for emerging technology (INCET), Belagavi, India, pp 1–4. https://doi.org/10.1109/INCET51464.2021.9456268

  6. G. Katti, N. DasGupta, A. DasGupta, Threshold voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution OF 3-D poisson’s equation. IEEE Trans. Electron Devices 51, 1169–1177 (2004). https://doi.org/10.1109/TED.2004.830648

    Article  CAS  Google Scholar 

  7. V. Narendar, P. Narware, V. Bheemudu, B. Sunitha, Investigation of short channel effects (SCEs) and analog/RF figure of merits (FOMs) of dual-material bottom-spacer ground-plane (DMBSGP) FinFET. SILICON 12, 2283–2291 (2020). https://doi.org/10.1007/s12633-019-00322-2

    Article  CAS  Google Scholar 

  8. H.S.P. Wong, K.K. Chan, Y. Taur, Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. In: Technical digest—international electron devices meeting, IEDM. pp 427–430 (1997)

  9. G. Pei, J. Kedzierski, P. Oldiges et al., FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron Devices 49, 1411–1419 (2002). https://doi.org/10.1109/TED.2002.801263

    Article  Google Scholar 

  10. S.S. Mahato, P. Chakraborty, T.K. Maiti et al., DIBL in short-channel strained-Si n-MOSFET

  11. E. Yu, K. Heo, S. Cho, Characterization and optimization of inverted-T FinFET under nanoscale dimensions. IEEE Trans. Electron Devices 65, 3521–3527 (2018). https://doi.org/10.1109/TED.2018.2846478

    Article  CAS  Google Scholar 

  12. D. Gola, B. Singh, P.K. Tiwari, subthreshold characteristic analysis and models for Tri-Gate SOI MOSFETs using substrate bias induced effects. IEEE Trans. Nanotechnol. 18, 329–335 (2019). https://doi.org/10.1109/TNANO.2019.2906567

    Article  CAS  Google Scholar 

  13. P. Wang, Y. Zhuang, C. Li et al., Subthreshold behavior models for nanoscale junctionless double-gate MOSFETs with dual-material gate stack. Jpn. J. Appl. Phys., 53 (2014). https://doi.org/10.7567/JJAP.53.084201

  14. V. Narendar, Performance enhancement of FinFET devices with gate-stack (GS) high-K dielectrics for nanoscale applications. SILICON 10, 2419–2429 (2018). https://doi.org/10.1007/s12633-018-9774-7

    Article  CAS  Google Scholar 

  15. J.P. Colinge, Problems and issues in SOI CMOS technology. In: 1991 IEEE international SOI conference proceedings. Publ by IEEE, pp 126–127 (1992)

  16. S. Veeraraghavan, J.G. Fossum, Short-channel effects in Soi Mosfet’s. IEEE Trans. Electron Devices 36, 522–528 (1989). https://doi.org/10.1109/16.19963

    Article  Google Scholar 

  17. C.K. Pandey, D. Dash, S. Chaudhury, Improvement in analog/RF performances of SOI TFET using dielectric pocket. Int. J. Electron. 107, 1844–1860 (2020). https://doi.org/10.1080/00207217.2020.1756439

    Article  Google Scholar 

  18. R.H. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992). https://doi.org/10.1109/16.141237

    Article  CAS  Google Scholar 

  19. H.S. Wong, D.J. Frank, Y. Taur, J.M.C. Stork, Design and performance considerations for sub-0.1 μm double-gate SOI MOSFETs. In: Technical Digest—International Electron Devices Meeting. IEEE, pp 747–750 (1994)

  20. B. Bhowmick, S. Baishya, GaAs SOI FinFET: impact of gate dielectric on electrical parameters and application as digital inverter (2018)

  21. A. Chaudhry, M.J. Kumar, Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51, 1463–1467 (2004). https://doi.org/10.1109/TED.2004.833961

    Article  Google Scholar 

  22. A. Kranti, T.M. Chung, D. Flandre, J.P. Raskin, Laterally asymmetric channel engineering in fully depleted double gate SOI MOSFETs for high performance analog applications. Solid State Electron. 48, 947–959 (2004). https://doi.org/10.1016/j.sse.2003.12.014

    Article  CAS  Google Scholar 

  23. S. Datta, G. Dewey, M. Doczy et al., High mobility Si/SiGe strained channel MOS transistors with HfO/sub 2//TiN gate stack. In: IEEE International Electron Devices Meeting 2003 28.1.1–28.1.4 (2003). https://doi.org/10.1109/IEDM.2003.1269365

  24. S. Tripathi, V. Narendar, A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015). https://doi.org/10.1016/j.spmi.2015.03.048

    Article  CAS  Google Scholar 

  25. A.B. Sachid, C.R. Manoj, D.K. Sharma, V.R. Rao, Gate fringe-induced barrier lowering in underlap FinFET structures and its optimization. IEEE Electron Device Lett. 29, 128–130 (2008). https://doi.org/10.1109/LED.2007.911974

    Article  CAS  Google Scholar 

  26. V. Narendar, R.A. Mishra, Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct. 85, 357–369 (2015). https://doi.org/10.1016/j.spmi.2015.06.004

    Article  CAS  Google Scholar 

  27. C.W. Lee, A. Afzalian, N.D. Akhavan et al., Junctionless multigate field-effect transistor. Appl. Phys. Lett., 94 (2009). https://doi.org/10.1063/1.3079411

  28. J.P. Colinge, C.W. Lee, N. Dehdashti Akhavan et al., Junctionless transistors: physics and properties. In: Engineering Materials. Springer Science and Business Media B.V., pp 187–200 (2011)

  29. F. Chen, X. Bin, C. Hella et al., A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics. Microelectronic Eng., pp 263–266 (2004)

  30. J.P. Raskin, T.M. Chung, V. Kilchytska et al., Analog/RF performance of multiple gate SOI devices: Wideband simulations and characterization. IEEE Trans. Electron Devices 53, 1088–1095 (2006). https://doi.org/10.1109/TED.2006.871876

    Article  CAS  Google Scholar 

  31. R. Kusuma, V.K.H.R. Talari, Design and optimization of dual material gate junctionless FinFET using dimensional effect, gate oxide and workfunction engineering at 7 nm technology node. SILICON (2022). https://doi.org/10.1007/s12633-022-01769-6

    Article  Google Scholar 

  32. J.P. Raskin, G. Pailloncy, D. Lederer et al., High-frequency noise performance of 60-nm gate-length FinFETs. IEEE Trans. Electron Devices 55, 2718–2727 (2008). https://doi.org/10.1109/TED.2008.2003097

    Article  CAS  Google Scholar 

  33. G. Crupi, D.M.M.P. Schreurs, A. Caddemi et al., Purely analytical extraction of an improved nonlinear FinFET model including non-quasi-static effects. Microelectron. Eng. 86, 2283–2289 (2009). https://doi.org/10.1016/j.mee.2009.04.006

    Article  CAS  Google Scholar 

  34. G. Crupi, A. Caddemi, D.M.M.P. Schreurs et al., Microwave noise modeling of FinFETs. Solid-State Electron. 56, 18–22 (2011). https://doi.org/10.1016/j.sse.2010.10.010

    Article  CAS  Google Scholar 

  35. Semiconductor Industry Association (2016) International Technology Roadmap for Semiconductors, 2015 Results. Itrpv., pp. 1–37

  36. Cogenda Pvt. Ltd., Genius Semiconductor Device Simulator Reference Manual. Singapore (2008)

  37. B. Yu, L. Chang, S. Ahmed et al., FinFET scaling to 10nm gate length. In: Digest International Electron Devices Meeting, pp 251–254 (2002). https://doi.org/10.1109/IEDM.2002.1175825

  38. R. Saha, B. Bhowmick, S. Baishya, Impact of work function on analog/RF and linearity parameters in step-FinFET. Indian JPhys 95, 2387–2392 (2021). https://doi.org/10.1007/s12648-020-01895-0

    Article  CAS  Google Scholar 

  39. R. Saha, B. Bhowmick, S. Baishya, Impact of lateral straggle on linearity performance in gate-modulated (GM) TFET. Appl. Phys. A Mater. Sci. Process., p. 126 (2020). https://doi.org/10.1007/S00339-020-3373-3

  40. J.-P. Raskin et al., High-frequency noise performance of 60-nm gate-length FinFETs. IEEE Trans. Electron Devices 55(10), 2718–2727 (2008). https://doi.org/10.1109/TED.2008.2003097

    Article  CAS  Google Scholar 

  41. S. Sahay, M.J. Kumar, Insight into lateral band-to-band-tunneling in nanowire junctionless FETs. IEEE Trans. Electron Devices 63(10), 4138–4142 (2016). https://doi.org/10.1109/TED.2016.2601239

    Article  CAS  Google Scholar 

  42. V.B. Sreenivasulu, V. Narendar, A comprehensive analysis of junctionless tri-gate (TG) FinFET towards low-power and high-frequency applications at 5-nm gate length. SILICON (2021). https://doi.org/10.1007/s12633-021-00987-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to the Department of Electronics and Communications Engineering, NIT Warangal for providing the TCAD Tools.

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

RK: Writing—Original draft preparation, Formal Analysis, Investigation, Simulation, and Data Curation. VKHRT: Conceptualization, Methodology, Supervision.

Corresponding author

Correspondence to Rambabu Kusuma.

Ethics declarations

The contents of this manuscript are not now under consideration for publication elsewhere; The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.

Conflict of interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

Yes.

Consent for Publication

Yes.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusuma, R., Talari, V.K.H.R. Dimensional Effect on Analog/RF Performance of Dual Material Gate Junctionless FinFET at 7 nm Technology Node. Trans. Electr. Electron. Mater. 24, 178–187 (2023). https://doi.org/10.1007/s42341-023-00440-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00440-0

Keywords

Navigation