Skip to main content
Log in

Dielectric Strength and Patterns of Partial Discharges in Nanocomposites Insulation of Three-Core Belted Power Cables

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Formulation of voids and impurities inside the power cable insulation may be found based on fabrication or installation processes that lead to the formation of high electrical stress and collapse of the insulation material of the power cable with cable aging. In this research, it has been investigated on possibility of nanoparticles for developing polyvinyl chloride that is used in power cable fabrication. Therefore, new polyvinyl chloride (PVC) nanocomposites have been fabricated and experimentally tested under high voltage tester. In this paper, it has been investigated on the effect of nanoparticles on electrostatic field distribution inside three-core power cables insulation in presence of air, water and copper impurities with different shapes (rectangle, circle and ellipse). Finite element method has been used to calculate the electrostatic field distribution in power cable insulation. This research success to design innovative patterns of polyvinyl chloride insulation materials for enhancing the electrical stress according to type and concentration of nanoparticles. Also, a comparative study of partial discharges in three-core power cables has been investigated on conventional PVC structure material and new nanocomposites industrial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Florkowska, J. Roehrich, P. Zydron, M. Florkowski, A. Rybak, Interaction of conductor with polymeric materials (XLPE/EPR) at partial discharges. IEEE Trans. Dielectr. Electr. Insul. 19, 2119–2127 (2012)

    Article  CAS  Google Scholar 

  2. L.A. Dissado, A. Thabet, Simulation of electrical ageing in insulating polymers using a quantitative physical model. J. Phys. D: Appl. Phys. 41, 085412 (2008)

    Article  Google Scholar 

  3. H.A. Illias, M.A. Tunio, A.H.A. Bakar, H. Mokhlis, G. Chen, Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation. IEEE Trans. Dielectr. Electr. Insul. 23(1), 451–459 (2016)

    Article  Google Scholar 

  4. J. Castellon, P. Notingher, S. Agnel, A. Toureille, J.F. Brame, P. Mirebeau, J. Matallana, Electric field and space charge measurements in thick power cable insulation. IEEE Electr. Insul. Mag. 28(4), 30–42 (2009)

    Article  Google Scholar 

  5. M. Abou Dakka, A. Bulinski, S.S. Bamji, On-site diagnostics of medium-voltage underground cross-linked polyethylene cables. IEEE Electr. Insul. Mag. 28(4), 34–44 (2011)

    Article  Google Scholar 

  6. F. Guastavino, A. Ratto, Comparison between conventional and nanofilled enamels under different environmental conditions. IEEE Electr. Insul. Mag. 28(4), 35–41 (2012)

    Article  Google Scholar 

  7. A. Thabet, Experimental enhancement for dielectric strength of polyethylene insulation materials using cost-fewer nanoparticles. Int. J. Electr. Power Energy Syst. 64, 469–475 (2015)

    Article  Google Scholar 

  8. Ahmed Thabet Mohamed, “Design and Investment of High Voltage NanoDielectrics” IGI Global, Publisher of Timely Knowledge, ISBN13: 9781799838296, ISBN10: 1799838293, EISBN13: 9781799838302, DOI: https://doi.org/10.4018/978-1-7998-3829-6, Pages 363, August 2020.

  9. A. Thabet, Experimental verification for improving dielectric strength of polymers by using clay nanoparticles. Adv. Electr. Electron. Eng. J. 13(2), 182–190 (2015)

    Google Scholar 

  10. A. Thabet, Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride. J. Int. Meas. Confed. 89, 28–33 (2016)

    Article  Google Scholar 

  11. A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Metals J. 220, 374–383 (2016)

    Article  CAS  Google Scholar 

  12. A. Thabet, Y.A. Mubarak, Thermal experiment analysis for dielectric characterization of high density polyethylene nanocomposites. Adv. Electr. Electron. Eng. J. 14(3), 295–303 (2016)

    Google Scholar 

  13. A. Thabet, Y.A. Mubarak, Experimental enhancement for electric properties of polyethylene nanocomposites under thermal conditions. Adv. Electr. Electron. Eng. J. 15(1), 55–62 (2017)

    Google Scholar 

  14. A. Thabet, Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials. Electr. Eng. J. 99(2), 487–493 (2017)

    Article  Google Scholar 

  15. A. Thabet, Y.A. Mubarak, The effect of cost-fewer nanoparticles on the electrical properties of polyvinyl chloride. Electr. Eng. J. 99(2), 625–631 (2017)

    Article  Google Scholar 

  16. Ahmed Thabet Mohamed, Emerging nanotechnology applications in electrical engineering. IGI Global, Publisher of Timely Knowledge, ISBN13: 9781799885368, ISBN10: 1799885364, EISBN13: 9781799885382. https://doi.org/10.4018/978-1-7998-8536-8 (2021)

  17. G. Mazzanti, M. Marzinotto, Extruded Cables for High Voltage Direct Current Transmission: Advances in Research and Development, Power Engineering Series. Wiley-IEEE Press, ISBN: 978–1–118–09666–6 (2013)

  18. M. Marzinotto, G. Mazzanti, C. Mazzetti, A new approach to the statistical enlargement law for comparing the breakdown performance of power cables—Part 1: Theory. IEEE Trans. Dielectr. Electr. Insul. 14(5), 1232–1241 (2007)

    Article  CAS  Google Scholar 

  19. M. Marzinotto, G. Mazzanti, C. Mazzetti, A new approach to the statistical enlargement law for comparing the breakdown performances of power cables—Part 2: application. IEEE Trans. Dielectr. Electr. Insul. 15(3), 792–799 (2008)

    Article  CAS  Google Scholar 

  20. G. Mazzanti, M. Marzinotto, Advanced electro-thermal life and reliability model for high voltage cable systems including accessories. IEEE Electr. Insul. Mag. 33(3), 17–25 (2017)

    Article  Google Scholar 

  21. A. Thabet, A.A. Ebnalwaled, Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications . J. Int. Measur. Confed. 110, 78–83 (2017)

    Article  Google Scholar 

  22. O. Gouda, Y. A. Mobarak, M. Samir, A simulation model for calculating the dielectric properties of nano-composite materials and comprehensive interphase approach, in 14th International Middle East Power Systems Conference (MEPCON), Cairo University, Egypt, pp. 151–156 (2010)

  23. K.K. Karkkainen, A.H. Sihvola, K.I. Nikoskinen, Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans. Geosci. Remote Sens. 38, 1303–1308 (2000)

    Article  Google Scholar 

  24. M. Todd, F. Shi, Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE Trans. Compon. Packag. Technol. 26(3), 667–672 (2003)

    Article  CAS  Google Scholar 

  25. A. Thabet, N. Salem, Optimizing dielectric characteristics of electrical materials using multi-nanoparticles technique, In IEEE, International Middle East Power System Conference” MEPCON”, 19–21 Dec., Menofia, EGYPT, pp.220–225 (2017)

  26. G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a Nanodielectric Cryogenic Resin. Appl, Phys, Lett 96(15), 152903-152903–3 (2010)

    Article  Google Scholar 

  27. N. Tagami, M. Hyuga, Y. Ohki, T. Tanaka, T. Imai, M. Harada, M. Ochi, Comparison of dielectric properties between epoxy composites with nanosized clay fillers modified by primary amine and tertiary amine. IEEE Dielectr. Electr. Insul. Trans. 17(1), 214–220 (2010)

    Article  CAS  Google Scholar 

  28. M. Todd, F. Shi, Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J. Appl. Phys. 94, 4551–4557 (2003)

    Article  CAS  Google Scholar 

  29. Y. Yi, M. Sastry, Analytical approximation of the two dimensional percolation threshold for fields of overlapping ellipses. Phys. Rev. E 66, 2002 (2002)

    Google Scholar 

  30. J. Brinker, G. W. Scherer, Sol-gel science: the physics chemistry of sol-gel processing, Academic Press, INC., An Imprint of Elsevier, ISBN-13:978–0–12–134970–7, ISBN-10: 0–12–134970–5, 1990

  31. L. Bois, F. Chassagneux, S. Parola, F. Bessueille, Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO–PPO–PEO. J. Solid State Chem. 182, 1700–1707 (2009)

    Article  CAS  Google Scholar 

  32. H.N. Azlinaa, J.N. Hasnidawania, H. Norita, S.N. Surip, Synthesis of SiO2 Nanostructures Using Sol-Gel Method, in 5th International Science Congress & Exhibition APMAS2015, Lykia, Oludeniz, Vol. 129, pp. 842–844 (2016)

  33. Reddy, Advances in nanocomposites—synthesis, characterization and industrial applications. Book, Intech Open, pp. 323–340, ISBN 978–953–307–165–7 (2011)

  34. A. Thabet, N. Salem, Experimental progress in electrical properties and dielectric strength of polyvinyl chloride thin films under thermal conditions. Trans Electr Electron Mater J 21(1), 1–10 (2019)

    Google Scholar 

  35. A. Thabet, N. Salem, Experimental verification on dielectric breakdown strength using individual and multiple nanoparticles in polyvinyl chloride. Trans. Electr. Electron. Mater. J. 21(3), 274–282 (2020)

    Article  Google Scholar 

  36. A. Thabet, N. Salem, Experimental investigation on dielectric losses and electric field distribution inside nanocomposites insulation of three-core belted power cables. Adv. Ind. Eng. Polym. Res. 4(1), 1857–1864 (2021)

    Google Scholar 

  37. M Alsharif, P A Wallace, D M Hepburn, C Zhou, FEM modelling of electric field and potential distributions of MV XLPE cables containing void defect, in COMSOL Conference, Milan, pp. 1–4 (2012)

  38. VEGA Grieshaber KG, List of dielectric constants catalogue, [online] Available: www.vega.com

  39. S. Patel, S. Chaudhary, M. Patel Analysis of electric stress in high voltage cables containing voids. Int. J. Eng. Res. Technol. 3(3) (2014).

  40. A. Thabet, N. Salem, Essam E. M. Mohamed, Modern insulations for power cables using multi-nanoparticles technique. Int. J. Electr. Eng. Inf 10(2), 271–279 (2018)

    Google Scholar 

  41. Nexans Energy Networks Company, 6–36kV Medium Voltage Underground Power Cables XLPE insulated cables catalogue, March 2010, [online] Available: www.nexans.co.uk

Download references

Acknowledgement

The present work was supported by Nanotechnology Research Center at Aswan University that is established by aiding the Science and Technology Development Fund (STDF), Egypt, Grant No: Project ID 505, 2009-2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Thabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabet, A., Fouad, M. Dielectric Strength and Patterns of Partial Discharges in Nanocomposites Insulation of Three-Core Belted Power Cables. Trans. Electr. Electron. Mater. 23, 136–148 (2022). https://doi.org/10.1007/s42341-021-00331-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00331-2

Keywords

Navigation