Skip to main content
Log in

Electrical and Mechanical Properties of SiR/Nano-silica/Micro-SiC Composites

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

SiR/nano-silica/micro-SiC composites were prepared in order to develop high voltage direct current (HVDC) insulation materials, and their HVDC insulating breakdown strength and tensile strength were carried out. Nano-silica content was fixed to 20 wt% and micro-SiC content varied from 0 to 30 wt%, and the micro-SiC was pretreated with hexamethyldisilazane before use. Positive HVDC insulation breakdown strength for SiR/nano-silica (20 wt%)/micro-SiC (10 wt%) composite was 72.08 kV/mm which was 18.2% higher than that of SiR/nano-silica (20 wt%) nanocomposite without SiC (60.99 kV/mm), which meant that properly dispersed micro-SiC enhanced the insulation breakdown strength. The maximum tensile strength was also shown in the SiR composites with nano-silica (20 wt%)/micro-SiC (10 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Yu, A.L. Skov, Int. J. Smart Nano Mater. 6, 268 (2015). https://doi.org/10.1080/19475411.2015.1119216

    Article  CAS  Google Scholar 

  2. H. Khan, M. Amin, A. Ahmad, Rev. Adv. Mater. Sci. 56, 91 (2018)

    Article  CAS  Google Scholar 

  3. W. Fang, X. Lai, H. Li, W. Chen, X. Zeng, L. Zhang, S. Yang, Polym. Test. 37, 19 (2014). https://doi.org/10.1016/j.polymertesting.2014.04.007

    Article  CAS  Google Scholar 

  4. T. Rey, G. Chagnon, J.B. Le Cam, D. Favier, Polym. Test. 32, 492 (2013). https://doi.org/10.1016/j.polymertesting.2013.01.008

    Article  CAS  Google Scholar 

  5. B.X. Du, Z.L. Li, I.E.E.E. Trans, Dielectr. Electr. Insul. 21, 2602 (2014). https://doi.org/10.1109/TDEI.2014.004521

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Li, B. Du, Appl. Phys. Lett. 105, 102905 (2014). https://doi.org/10.1063/1.4895734

    Article  CAS  Google Scholar 

  7. M. Tariq Nazir and B. T. Phung, 2015 IEEE Electrical Insulation Conference (EIC), 7–10 June 2015, Seattle, Washington, USA, p. 488 (2015). https://ieeexplore.ieee.org/document/7223505.

  8. L. Wu, X. Wang, L. Ning, J. Han, Z. Wan, M. Lu, J. Appl. Biomater. Funct. Mater. 14, 11 (2016). https://doi.org/10.5301/jabfm.5000298

    Article  CAS  Google Scholar 

  9. Y. Jeon, S.K. Hong, M. Kim, Energies 12, 2401 (2019). https://doi.org/10.3390/en12122401

    Article  CAS  Google Scholar 

  10. J.V. Vas, B. Venkatesulu, M.J. Thomas, I.E.E.E. Trans, Dielectr. Electr. Insul. 19, 91 (2012)

    Article  CAS  Google Scholar 

  11. M.J. Wang, M.D. Morris, Y. Kutsovsky, Elastom. Plast. 61, 107 (2008)

    Google Scholar 

  12. S. Diao, K. Jin, Z. Yang, H. Lu, S. Feng, C. Zhang, Mater. Chem. Phys. 129, 202 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.077

    Article  CAS  Google Scholar 

  13. C. Wu, Y. Gao, X. Liang, S.M. Gubanski, Q. Wang, W. Bao, S. Li, Polymers 11, 717 (2019). https://doi.org/10.3390/polym11040717

    Article  CAS  Google Scholar 

  14. V.M. Gun’ko, E.M. Pakhlov, O.V. Goncharuk, L.S. Andriyko, YuM Nychiporuk, DYu. Balakin, D. Sternik, A. Derylo-Marczewska, J. Colloid Interface Sci. 529, 273 (2018). https://doi.org/10.1016/j.jcis.2018.06.019

    Article  CAS  Google Scholar 

  15. I.F. Mironyuk, V.M. Gun’ko, H.V. Vasylyeva, O.V. Goncharuk, T.R. Tatarchuk, V.I. Mandzyuk, N.A. Bezruka, T.V. Dmytrotsa, Microporous Mesoporous Mater. 277, 95 (2019). https://doi.org/10.1016/j.micromeso.2018.10.016

    Article  CAS  Google Scholar 

  16. A.I. Barabanova, T.A. Pryakhina, E.S. Afanas’ev, B.G. Zavin, Ya.S. Vygodskii, A.A. Askadskii, O.E. Philippova, A.R. Khokhlov, Appl. Surf. Sci. 258, 3168 (2012). https://doi.org/10.1016/j.apsusc.2011.11.057

    Article  CAS  Google Scholar 

  17. T. Zhang, Y. Lei, J. Yin, J. Du, P. Yu, Ceram. Int. 45, 13951 (2019). https://doi.org/10.1016/j.ceramint.2019.04.093

    Article  CAS  Google Scholar 

  18. J.J. Park, C.Y. Yoon, J.Y. Lee, J.H. Cheong, G.B. Kang, Trans. Electr. Electron. Mater. 17, 155 (2016). https://doi.org/10.4313/TEEM.2016.17.3.155

    Article  Google Scholar 

  19. https://www.weibull.com/hotwire/issue14/relbasics14.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JJ., Lee, JY. Electrical and Mechanical Properties of SiR/Nano-silica/Micro-SiC Composites. Trans. Electr. Electron. Mater. 21, 99–104 (2020). https://doi.org/10.1007/s42341-019-00157-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00157-z

Keywords

Navigation