Skip to main content
Log in

Adsorption of Methylene Blue in Aqueous Medium by Activated Carbon from Peanut Shells

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The valorization of lignocellulosic biomass with the aim of producing activated carbon is a strategy to combat pollution and protect the environment. The study is about the process for making activated carbon from peanut shells (AC-CAR) for the purpose to remove methylene blue (MB) in aqueous medium. After activation and characterization, the influence of adsorbent mass, pH, initial concentration of MB and duration of contact on the adsorption capacity of AC-CAR have been investigated. Additionally, kinetics, isotherms, and thermodynamic parameters were determined. Results show that the adsorption capacity increases with higher masses of AC-CAR and higher pH values of the adsorbate. Moreover, the equilibrium time is achieved at lower concentrations of MB. The pseudo-second-order kinetic model provides a more accurate representation of the adsorption kinetics of MB on AC-CAR. Langmuir mathematical model effectively describes the adsorption isotherm for the studied adsorbent/adsorbate system, with a maximum adsorption capacity of 109.89 mg/g. Thermodynamic parameters, including the free enthalpy (ΔGº < 0) and enthalpy (ΔHº = 20.94 kJ), show that the adsorption process is spontaneous and endothermic, respectively. The entropy value (ΔS = 95.798 J K−1) suggests a strong affinity between the adsorbent and the adsorbate. As a result, the generated activated carbon might be used as an adsorbent to remove cationic dyes in aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data may be available of third parties without problems.

References

  1. Aarfane A, Salhi A, Krati ME, Tahiri S, Monkade M, Lhadi EK, Bensitel M (2014) Etude cinétique et thermodynamique de l’adsorption des colorants Red195 et Bleu de méthylène en milieu aqueux sur les cendres volantes et les mâchefers (Kinetic and thermodynamic study of the adsorption of Red195 and Methylene blue dyes on fly ash and bottom ash in aqueous medium). J Mater Environ Sci 5:1927–1939

    Google Scholar 

  2. Bentahar Y, Draoui K, Hurel C, Ajouyed O, Khairoun S, Marmier N (2019) Physico-chemical characterization and valorization of swelling and non-swelling Moroccan clays in basic dye removal from aqueous solutions. J Afr Earth Sc 154:80–88. https://doi.org/10.1016/j.jafrearsci.2019.03.017

    Article  CAS  Google Scholar 

  3. Al-Sheikh F, Jasim FT, Al-Humairi ST, Hussein I, AbdulRazak AA, Shakor ZM, Rohani S (2023) Adsorption of blue cationic thiazine dye from synthetic wastewater by natural iraqi bentonite using response surface methodology: isotherm, kinetic, and thermodynamic studies, chemistry. Africa 6:1437–1447. https://doi.org/10.1007/s42250-023-00591-w

    Article  CAS  Google Scholar 

  4. Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib 317:9–14. https://doi.org/10.1016/j.fluid.2011.12.026

    Article  CAS  Google Scholar 

  5. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: A review, Journal of Environmental. Chem Eng 6:4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  6. Sanni S, Tchakala I, Balogoun CK, Kodom T, Bawa ML (2022) Study of the synthesis of activated carbon from brewery grains: application to the removal of the cationic dye methylene blue. AJPC. 11:78–84. https://doi.org/10.11648/j.ajpc.20221103.15

    Article  CAS  Google Scholar 

  7. Sime T, Fito J, Nkambule TTI, Temesgen Y, Sergawie A (2023) Adsorption of congo red from textile wastewater using activated carbon developed from corn cobs: the studies of isotherms and kinetics, chemistry. Africa 6:667–682. https://doi.org/10.1007/s42250-022-00583-2

    Article  CAS  Google Scholar 

  8. Boumaiza F, Marzouk Trifi I, Mnif A (2023) Simultaneous removal of cationic dyes by biosorption onto activated orange peels using doehlert design. Chemistry Africa. https://doi.org/10.1007/s42250-023-00685-5

    Article  Google Scholar 

  9. Ouattara LY, Kouassi EKA, Soro D, Soro Y, Yao KB, Adouby K, Drogui AP, Tyagi DR, Aina PM (2020) Cocoa pod husks as potential sources of renewable high-value-added products: a review of current valorizations and future prospects. BioRes. 16:1988–2020. https://doi.org/10.15376/biores.16.1.Ouattara

    Article  Google Scholar 

  10. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM (2020) Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J Environ Chem Eng 8:104257. https://doi.org/10.1016/j.jece.2020.104257

    Article  CAS  Google Scholar 

  11. Medhat A, El-Maghrabi HH, Abdelghany A, Abdel Menem NM, Raynaud P, Moustafa YM, Elsayed MA, Nada AA (2021) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv. 3:100037. https://doi.org/10.1016/j.apsadv.2020.100037

    Article  Google Scholar 

  12. Neme I, Gonfa G, Masi C (2022) Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4. Results Mater 15:100304. https://doi.org/10.1016/j.rinma.2022.100304

    Article  CAS  Google Scholar 

  13. Abubakar UI, Abdullahi M, Abdul-Hamid H (2023) Adsorption of methylene blue dye onto modified activated carbon produced from groundnut shells. J Mater Environ Sci 14(8):947–966

    CAS  Google Scholar 

  14. Ahmad MA, Yusop MFM, Zakaria R, Karim J, Yahaya NKEM, Yusoff MAM, Hashim NHF, Abdullah NS (2021) Adsorption of methylene blue from aqueous solution by peanut shell based activated carbon. Mater Today Proc 47:1246–1251

    Article  CAS  Google Scholar 

  15. Gülen J, Zorbay F (2017) Methylene blue adsorption on a low cost adsorbent—carbonized peanut shell. Water Environ Res. 89(9):805–816

    Article  PubMed  Google Scholar 

  16. Diao Y, Walawender WP, Fan LT (2002) Activated carbons prepared from phosphoric acid activation of grain sorghum. Biores Technol 81:45–52. https://doi.org/10.1016/S0960-8524(01)00100-6

    Article  CAS  Google Scholar 

  17. ASTM (2000) Test method for total ash content of activated carbon. ASTM Int. https://doi.org/10.1520/D2866-11

    Article  Google Scholar 

  18. Kouakou LPM-S, Karidioula D, Manouan MRW, Pohan AGL, Cissé G, Konan LK, Andji-Yapi JY (2023) Use of two clays from Côte d’Ivoire for the adsorption of methyl red from aqueous medium. Chem Phys Lett 810:140183. https://doi.org/10.1016/j.cplett.2022.140183

    Article  CAS  Google Scholar 

  19. Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275. https://doi.org/10.1016/j.micromeso.2015.07.005

    Article  CAS  Google Scholar 

  20. Pereira RG, Veloso CM, Da Silva NM, De Sousa LF, Bonomo RCF, De Souza AO, Souza MODG, Fontan RDCI (2014) Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCL2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol 126:476–486. https://doi.org/10.1016/j.fuproc.2014.06.001

    Article  CAS  Google Scholar 

  21. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  22. Gueye M, Richardson Y, Kafack FT, Blin J (2014) High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J Environ Chem Eng 2:273–281. https://doi.org/10.1016/j.jece.2013.12.014

    Article  CAS  Google Scholar 

  23. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  CAS  Google Scholar 

  24. Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from Fox nut ( Euryale ferox ) shell by chemical activation with H 3 PO 4. Results in Physics 6:651–658. https://doi.org/10.1016/j.rinp.2016.09.012

    Article  Google Scholar 

  25. Mariah MAA, Rovina K, Vonnie JM, Erna KH (2023) Characterization of activated carbon from waste tea (Camellia sinensis) using chemical activation for removal of methylene blue and cadmium ions, South African Journal of. Chem Eng 44:113–122. https://doi.org/10.1016/j.sajce.2023.01.007

    Article  Google Scholar 

  26. Alzaydien AS (2016) Physical, chemical and adsorptive characteristics of local oak sawdust based activated carbons. Asian J. Sci Res 9:45–56. https://doi.org/10.3923/ajsr.2016.45.56

    Article  CAS  Google Scholar 

  27. Tan CHC, Sabar S, Hussin MH (2018) Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South Afr J Chem Eng 26:11–24. https://doi.org/10.1016/j.sajce.2018.08.001

    Article  Google Scholar 

  28. Ibrahim MNM, Ngah WSW, Norliyana MS, Daud WRW (2009) Copper(II) biosorption on soda lignin from oil palm empty fruit bunches (EFB). Clean Soil Air Water 37:80–85. https://doi.org/10.1002/clen.200800187

    Article  CAS  Google Scholar 

  29. Degbe KA, Bafai DD, Koriko M, Tchegueni S, Lhoussaine C, El Meray M, Hafidi M, Tchangbedji G (2021) Lead sorption by Togo rock phosphate as a sustainable solution to metal water depollution. DWT 224:302–307. https://doi.org/10.5004/dwt.2021.27187

    Article  CAS  Google Scholar 

  30. Kam OR, Bakouan C, Zongo I, Guel B (2022) Removal of thallium from aqueous solutions by adsorption onto alumina nanoparticles. Processes 10:1826. https://doi.org/10.3390/pr10091826

    Article  CAS  Google Scholar 

  31. Ebrahimian Pirbazari A, Saberikhah E, Badrouh M, Emami MS (2014) Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour Ind. 6:64–80. https://doi.org/10.1016/j.wri.2014.07.003

    Article  Google Scholar 

  32. Ahmad A, Jini D, Aravind M, Parvathiraja C, Ali R, Kiyani MZ, Alothman A (2020) A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arab J Chem 13:8717–8722. https://doi.org/10.1016/j.arabjc.2020.10.002

    Article  CAS  Google Scholar 

  33. Tham YJ, Latif PA, Abdullah AM, Shamala-Devi A, Taufiq-Yap YH (2011) Performances of toluene removal by activated carbon derived from durian shell. Biores Technol 102:724–728. https://doi.org/10.1016/j.biortech.2010.08.068

    Article  CAS  Google Scholar 

  34. Liou T-H (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158:129–142. https://doi.org/10.1016/j.cej.2009.12.016

    Article  CAS  Google Scholar 

  35. Li S, Han K, Li J, Li M, Lu C (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300. https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  CAS  Google Scholar 

  36. Puziy AM, Poddubnaya OI, Martínez-Alonso A, Suárez-García F, Tascón JMD (2005) Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43:2857–2868. https://doi.org/10.1016/j.carbon.2005.06.014

    Article  CAS  Google Scholar 

  37. Soni H, Padmaja P (2014) Palm shell based activated carbon for removal of bisphenol A: an equilibrium, kinetic and thermodynamic study. J Porous Mater 21:275–284. https://doi.org/10.1007/s10934-013-9772-5

    Article  CAS  Google Scholar 

  38. Akpomie KG, Dawodu FA (2014) Efficient abstraction of nickel(II) and manganese(II) ions from solution onto an alkaline-modified montmorillonite, Journal of Taibah University for. Science 8:343–356. https://doi.org/10.1016/j.jtusci.2014.05.001

    Article  Google Scholar 

  39. Khodabandehloo A, Rahbar-Kelishami A, Shayesteh H (2017) Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies. J Mol Liq 244:540–548. https://doi.org/10.1016/j.molliq.2017.08.108

    Article  CAS  Google Scholar 

  40. Pua FL, Sajab MS, Chia CH, Zakaria S, Rahman IA, Salit MS (2013) Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions, Journal of Environmental. Chem Eng 1:460–465. https://doi.org/10.1016/j.jece.2013.06.012

    Article  CAS  Google Scholar 

  41. Zaker Y, Hossain MA, Islam TSA (2013) Adsorption kinetics of methylene blue onto clay fractionated from bijoypur soil, Bangladesh. Res J Chem Sci 3:65–72

    CAS  Google Scholar 

  42. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267. https://doi.org/10.1016/j.desal.2005.10.032

    Article  CAS  Google Scholar 

  43. Doğan M, Alkan M, Demirbaş Ö, Özdemir Y, Özmetin C (2006) Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem Eng J 124:89–101. https://doi.org/10.1016/j.cej.2006.08.016

    Article  CAS  Google Scholar 

  44. Haitham K, Razak S, Nawi MA (2019) Kinetics and isotherm studies of methyl orange adsorption by a highly recyclable immobilized polyaniline on a glass plate. Arab J Chem 12:1595–1606. https://doi.org/10.1016/j.arabjc.2014.10.010

    Article  CAS  Google Scholar 

  45. Bujdák J (2020) Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl Clay Sci 191:105630. https://doi.org/10.1016/j.clay.2020.105630

    Article  CAS  Google Scholar 

  46. Srihari V, Das A (2009) Adsorption of phenol from aqueous media by an agro-waste (hemidesmus indicus) based activated carbon. Appl Ecol Env Res. 7:13–23. https://doi.org/10.15666/aeer/0701_013023

    Article  Google Scholar 

  47. Derakhshan Z, Baghapour MA, Ranjbar M, Faramarzian M (2013) Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies. Health Scope. 2:136–144. https://doi.org/10.17795/jhealthscope-12492

    Article  Google Scholar 

  48. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Biores Technol 98:2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045

    Article  CAS  Google Scholar 

  49. Langmuir I (1918) The adsorption of gases on plane surfaces of gllass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  50. Aljlil S, Alsewailem F (2009) Saudi Arabian clays for lead removal in wastewater. Appl Clay Sci 42:671–674. https://doi.org/10.1016/j.clay.2008.03.012

    Article  CAS  Google Scholar 

  51. Ayedi N, Rzig B, Bellakhal N (2023) Catalytic hydrothermal carbonization of olive wood charcoal for methylene blue adsorption from wastewater: optimization, isotherm, kinetic and thermodynamic studies, chemistry. Africa 6:765–778. https://doi.org/10.1007/s42250-023-00628-0

    Article  CAS  Google Scholar 

  52. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigm 51:25–40. https://doi.org/10.1016/S0143-7208(01)00056-0

    Article  CAS  Google Scholar 

  53. Coşkun R, Yıldız A, Delibaş A (2017) Removal of methylene blue using fast sucking adsorbent. JMES 8:398–409

    Google Scholar 

  54. Wang S, Boyjoo Y, Choueib A (2005) A comparative study of dye removal using fly ash treated by different methods. Chemosphere 60:1401–1407. https://doi.org/10.1016/j.chemosphere.2005.01.091

    Article  CAS  PubMed  Google Scholar 

  55. Mehmet D, Mahir A, Aydın T, Yasemin Ö (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148. https://doi.org/10.1016/j.jhazmat.2004.03.003

    Article  CAS  Google Scholar 

  56. Alkan M, Demirbaş Ö, Çelikçapa S, Doğan M (2004) Sorption of acid red 57 from aqueous solution onto sepiolite. J Hazard Mater 116:135–145. https://doi.org/10.1016/j.jhazmat.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Tian J, Li Y, Sun N, Mi S, Xie Y, Chen Z (2019) Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J Hazard Mater 373:397–407. https://doi.org/10.1016/j.jhazmat.2019.03.103

    Article  CAS  PubMed  Google Scholar 

  58. Yapo NS, Briton BGH, Aw S, Reinert L, Drogui P, Adouby K (2021) Bivalve shells (Corbula trigona ) as a new adsorbent for the defluoridation of groundwater by adsorption-precipitation. J Environ Sci Health, Part A 56:694–704. https://doi.org/10.1080/10934529.2021.1917937

    Article  CAS  Google Scholar 

  59. Hussin MH, Kassim MJ (2011) The corrosion inhibition and adsorption behavior of Uncaria gambir extract on mild steel in 1M HCl. Mater Chem Phys 125:461–468. https://doi.org/10.1016/j.matchemphys.2010.10.032

    Article  CAS  Google Scholar 

  60. Saǧ Y, Kutsal T (2000) Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J 6:145–151. https://doi.org/10.1016/S1369-703X(00)00083-8

    Article  PubMed  Google Scholar 

  61. Borgohain X, Boruah A, Sarma GK, Rashid MdH (2020) Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water. J Mol Liq 305:112799. https://doi.org/10.1016/j.molliq.2020.112799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jean Emmanuel Aubert and Vanessa Mazars from Université Paul Sabatier, Toulouse III (Toulouse, France) for their implications in the realization of infrared spectrum, X-ray diffractogram and SEM-EDS analyses of activated carbon.

Funding

This research study has not received external funding anywhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issiaka Sanou.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest during the paper writing and submitting in Chemistry Africa Journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanou, I., Bamogo, H., Sanou, A. et al. Adsorption of Methylene Blue in Aqueous Medium by Activated Carbon from Peanut Shells. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00927-0

Keywords

Navigation