Skip to main content
Log in

Molecular Docking, Regio, Chemo and Stereoselectivity Study of the [3 + 2] Cycloaddition Reaction Between Pyridazi-3-one and Nitrilimine

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

A Correction to this article was published on 05 September 2023

This article has been updated

Abstract

The MEDT is applied to the [3 + 2] cycloaddition processes between 6-methyl-4,5-dihydro 2 H-pyridazi-3-one (1) with 2-ethoxy-2-oxo-1-(p-tolyldiazen-1-ium-1-ylidene)ethan-1-ide (2). Calculations are made for reaction, activation energies, and reactivity indices. The results of the experiment are perfectly consistent with Par function, ELF analysis and activation energies, which unequivocally show that this cyclization is regio-, chemo and stereospecific. In addition a docking study has been carried out of the possible cycloadducts, our result indicate that product P3 has the highest affinity, which shows that this is a product that can be used as a drug against Covid-19 disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Change history

References

  1. Abouzida K, Bekhit SA (2008) Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity. Bioorg Med Chem 16:5547–5556

    Article  Google Scholar 

  2. Giovannoni MP, Vergelli C, Ghelardini C, Galeotti N, Bartolini A, Piaz VD (2003) [(3-Chlorophenyl)piperazinylpropyl]pyridazinones and analogues as potent Antinociceptive Agents. J Med Chem 46:1055–1059

    Article  CAS  PubMed  Google Scholar 

  3. Malinka W, Redzicka A, Jastrzebska-Wiesek M, Filipek B, Dybala M, Karczmarzyk Z, Urbanczyk-Lipkowska Z, Kalicki P (2011) Derivatives of pyrrolo[3,4-d]pyridazinone, a new class of analgesic agents. Eur J Med Chem 46:4992–4999

    Article  CAS  PubMed  Google Scholar 

  4. Harris RR, Black L, Surapaneni S, Kolasa T, Majest S, Namovic MT, Grayson G, Komater V, Wilcox D, King L, Marsh K, Jarvis MF, Nuss M, Nellans H, Pruesser L, Reinhart GA, Cox B, Jacobson P, Stewart A, Coghlan M, Carter G, Bell RL (2004) ABT-963 [2-(3,4-Difluoro-phenyl)-4-(3-hydroxy-3-methyl-butoxy)-5-(4-methanesulfonyl-phenyl)-2H-pyridazin-3-one], a highly potent and selective disubstituted pyridazinone Cyclooxgenase-2 inhibitor. J Pharmacol Exp Ther 311:904–912

    Article  CAS  PubMed  Google Scholar 

  5. Costantino L, Rastelli G, Cignarella G, Barlocco D (2000) Synthesis and aldose reductase inhibitory activity of a new series of benzo[h]cinnolinone derivatives. IL Farmaco 55:544–552

    Article  CAS  PubMed  Google Scholar 

  6. Abd El-Ghaffar NF, Mohamed MK, Kadah MS, Radwan AM, Said GH, Abd el Al SN (2011) Synthesis and anti-tumor activities of some new pyridazinones containing the 2-phenyl-1H-indolyl moiety. J Chem Pharm Res 3:248–259

    CAS  Google Scholar 

  7. Murty MSR, Rao BR, Ram KR, Yadav JS, Antony J, Anto RJ (2012) Synthesis and preliminary evaluation activity studies of novel 4-(aryl/heteroaryl-2-ylmethyl)-6-phenyl-2-[3-(4-substituted-piperazine-1-yl)propyl]pyridazin-3(2H))-one derivatives as anticancer agents. Med Chem Res 21:3161–3169

    Article  CAS  Google Scholar 

  8. Prasanna S, Manivannan E, Chaturvedi SC (2005) QSAR studies on structurally similar 2-(4-methanesulfonylphenyl)pyran-4-ones as selective COX-2 inhibitors: a Hansch approach. Bioorg Med Chem Lett 15:313–320

    Article  CAS  PubMed  Google Scholar 

  9. Tanwar L, Piplani H, Sanyal S (2010) Anti-proliferative and apoptotic Effects of Etoricoxib, a selective COX-2 inhibitor, on 1,2-Dimethylhydrazine Dihydrochloride-Induced Colon carcinogenesis. Asian Pac J Cancer Prev 1:1329–1333

    Google Scholar 

  10. Liang L, Yang G, Xu F, Niu Y, Sun Q, Xu P (2013) Copper-catalyzed aerobic dehydrogenation of C–C to C = C bonds in the synthesis of Pyridazinones. Eur J Org Chem 2013:6130–6136

    Article  CAS  Google Scholar 

  11. Sotelo E, Raviña E, Estevez I (1999) Pyridazine derivatives. XIX: functionalization studies at the 5 position in the 6-phenyl-3(2H)-pyridazinone system. J Het Chem 36:985–990

    Article  CAS  Google Scholar 

  12. Alex K, Tillack A, Schwarz N, Beller M (2008) First synthesis of 4,5-dihydro-3(2H)-pyridazinones via Zn-mediated hydrohydrazination. Tetrahedron Let 49:4607–4609

    Article  CAS  Google Scholar 

  13. Kim JJ, Park YD, Cho SD, Kim H-K, Chung HA, Lee S-G, Falck JR, Yoon YJ (2004) Efficient N-arylation of pyridazin-3(2H)-ones. Tetrahedron Let 45:8781–8784

    Article  CAS  Google Scholar 

  14. Mojahidi S, Rakib EM, Sekkak H, Abouricha S, Benchat N, Ait Mousse H, Zyad A (2010) Synthesis and in-vitro cytotoxic evaluation of Novel Pyridazin-4-one derivatives. Arch Pharm Chem Life Sci 343:310–313

    Article  CAS  Google Scholar 

  15. Mojahidi S, Sekkak H, Rakib EM, Neves M G P M S, Faustino MAF, Cavaleiro JAS, Zouihri H (2013) Alkylation and 1,3-Dipolar Cycloaddition of 6-Styryl-4,5-dihydro-2H-pyridazin-3-one: synthesis of Novel N-Substituted Pyridazinones and Triazolo[4,3-b]pyridazinones. J Chem 2013:636280

    Article  Google Scholar 

  16. Abouricha S, Rakib EM, Benchat N, Alaoui M, Allouchi H, El Bali B (2005) Facile synthesis of New Spirothiadiazolopyridazines by 1,3-Dipolar Cycloaddition. Synth Commun 35(16):2213–2221

    Article  CAS  Google Scholar 

  17. Rakib EM, Abouricha S, Hannioui A, Benchat N, Ait M, Zyad L A (2006) Synthesis and in vitro cytotoxicity studies of Novel Triazolo[4,3-b]pyridazinones. J Iran Chem Soc 3:272–276

    Article  CAS  Google Scholar 

  18. Meldal M, Wenzel Tornøe C (2008) Cu-Catalyzed azide – alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  PubMed  Google Scholar 

  19. Domingo LR, Ghodsi F, Ríos-Gutiérrez M (2019) A Molecular Electron Density Theory Study of the synthesis of Spirobipyrazolines through the Domino reaction of Nitrilimines with Allenoates. Molecules 24:4159

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pipim GB, Opoku E, Tia R, Adei E (2020) Peri-, Chemo-, Regio-, stereo- and Enantio-Selectivities of 1,3-dipolar cycloaddition reaction of C,N-Disubstituted nitrones with disubstituted 4-methylene-1,3-oxazol-5(4H)- one: a quantum mechanical study. J Mol Graph Model 97:107542

    Article  CAS  PubMed  Google Scholar 

  21. Sanad SMH, Mekky AEM (2022) [3 + 2] Cycloaddition synthesis of new (nicotinonitrile-chromene) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors. Synth Commun 52:1672–1684

    Article  CAS  Google Scholar 

  22. Dhar DN, Ragunathan R (1984) Synthesis of spiro-pyrazolines: reaction of 1,3-diphenylnitrilimine with fulvenes. Tetrahedron 40:1585–1590

    Article  CAS  Google Scholar 

  23. Li W, Dong H, Ma J, Li S (2021) Structures and Spectroscopic Properties of large molecules and condensed-phase Systems predicted by Generalized Energy-Based Fragmentation Approach. Acc Chem Res 54:169–181

    Article  CAS  PubMed  Google Scholar 

  24. Sá GFD, Malta OL, Donegá CDM, Simas AM, Longo RL, Santa-Cruz PA, Silva EFD (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195

    Article  Google Scholar 

  25. Żmigrodzka M, Sadowski M, Kras J, Dresler E, Demchuk OM, Kula K (2022) Polar [3 + 2] cycloaddition between N-methylazomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci Radices 1:26–35

    Article  Google Scholar 

  26. Zeroual A, Ríos-Gutiérrez M, El Ghozlani M, El Idrissi M, Ouled Aitouna A, Salah M, El Abdallaoui HE, Domingo LR (2020) A molecular electron density theory investigation of the molecular mechanism, regioselectivity, stereoselectivity and chemoselectivity of cycloaddition reaction between acetonitrile N-oxide and 2,5-dimethyl-2H-[1,2,3]diazarsole. Theor Chem Acc 139:37

    Article  CAS  Google Scholar 

  27. Mondal A, Mohammad-Salim HA, Acharjee N (2023) Unveiling substituent effects in [3 + 2] cycloaddition reactions of benzonitrile N-oxide and benzylideneanilines from the molecular electron density theory perspective. Sci Radices 2:75–92

    Article  Google Scholar 

  28. Salah M, Belghiti ME, Aitouna AO, Zeroual A, Jorio S, El Alaoui Abdellaoui H, El Hadki H, Marakchi K, Komiha N (2021) MEDT Study of the 1,3-DC reaction of diazomethane with psilostachyin and investigation about the interactions of some pyrazoline derivatives with protease (Mpro) of nCoV-2. J Mol Graph Model 102:107763

    Article  CAS  PubMed  Google Scholar 

  29. Mohammad-Salim HA, Basheer HA, Abdallah HH, Zeroual A, Abdi Jamila L (2021) A molecular electron density theory study for [3 + 2] cycloaddition reactions of N-benzylcyclohexylnitrone with methyl-3-butenoate. New J Chem 45:262–267

    Article  CAS  Google Scholar 

  30. Salah M, Zeroual A, Jorio S, El Hadki H, Kabbaj O, Marakchi K, Komiha N (2020) Theoretical study of the 1,3-DC reaction between fluorinated alkynes and azides: reactivity indices, transition structures, IGM and ELF analysis. J Mol Graph Model 94:107458

    Article  CAS  PubMed  Google Scholar 

  31. Siadati SA, Rezazadeh S (2022) The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technologyvol. Sci Radices 1:46–68

    Article  Google Scholar 

  32. Barhoumi A, El Idrissi M, Zeroual A, Tounsi A, Bakkas S, ElHajbi A (2021) Theoretical study of the chemical reactivity of a class of trivalent phosphorus derivatives towards polyhaloalkanes: DFT study. J Mol Model 27:197

    Article  CAS  PubMed  Google Scholar 

  33. El Ghozlani M, Barhoumi A, Elkacmi R, Ouled Aitouna A, Zeroual A, El Idrissi M (2020) Mechanistic study of Hetero-Diels–Alder [4 + 2] cycloaddition reactions between 2-Nitro-1H-Pyrrole and isoprene. Chem Afr 3:901–909

    Article  Google Scholar 

  34. Zahnoune R, Asserne F, Ourhriss N, Ouled Aitouna A, Barhoumi A, Hakmaoui Y, Belghiti ME, Abouricha S, El ajlaoui R, Zeroual A (2022) Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride. J Mol Struct 1269:133630

    Article  CAS  Google Scholar 

  35. Gaussian 09, Frisch MJ et al (2009) Gaussian, Inc., Wallingford CT,

  36. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 2:214–218

    Article  Google Scholar 

  37. Schmidt MW, Gordon MS, Dupuis M (1985) The intrinsic reaction coordinate and the rotational barrier in silaethylene. J Am Chem Soc 107:9, 2585–2589. https://doi.org/10.1021/ja00295a002

    Article  CAS  Google Scholar 

  38. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of MethodsBased on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  39. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: anew implementation of the polarizable continuum model. Chem Phys Lett 255:327–327

    Article  CAS  Google Scholar 

  40. Mennucci B, Cances E, Tomasi J (1997) Evaluation of solvent effects in isotropic andAnisotropic dielectrics and in ionic solutions with a unified integral equation method:theoretical bases, computational implementation, and numerical applications. J Chem Phys 101:10506–10517

    Article  CAS  Google Scholar 

  41. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures insolution by the polarizable continuum model. J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  42. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  43. Domingo LR, Chamorro E, Prerez P (2008) Understanding the reactivity of CaptodativeEthylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624

    Article  CAS  PubMed  Google Scholar 

  44. Domingo LR, Perez P, Séaez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic parr functions. RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  45. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic andmolecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  46. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Discovery (2009) Studio 4.5 Guide, Accelrys Inc., San Diego, http://www.accelrys.com

  49. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger LLC

  50. Ríos-Gutiérrez M, Saz Sousa A, Domingo LR (2023) Electrophilicity and nucleophilicity scales at different DFT computational levels. J Phys Org Chem 36:e4503

    Article  Google Scholar 

  51. Adjieufack AI, Ongagna JM, Tchidjoa JFK, Ndassa IM (2021) Topological unraveling of the [3 + 2] cycloaddition (32CA) reaction between N-methylphenylnitrone and styrene catalyzed by the chromium tricarbonyl complex using electron localization function and catastrophe theory. New J Chem 45:20342–20351

    Article  CAS  Google Scholar 

  52. Ouahdi Z, Ouled Aitouna A, Barhoumi A, Belghiti ME, El idrissi M, El Alaoui Abdellaoui H, Syed A, Zeroual A, Benharref A (2023) Elucidating the selectivities and the mechanism of [3 + 2] cycloloaddition reaction between 9α-hydroxyparthenolide and 4-methylbenzene-nitrile-oxide. Comput Theor Chem 1226:114212

    Article  CAS  Google Scholar 

  53. Andres J, Gonzaléz-Navarrete P, Sixste Safont V (2014) Unraveling reaction mechanisms by means of Quantum Chemical Topology Analysis. Int J Quantum Chem 114:1239–1252

    Article  CAS  Google Scholar 

  54. Domingo LR, Ríos-Gutiérrez M (2022) Application of Reactivity Indices in the Study of Polar Diels—Alder Reactions. Conceptual Density Functional Theory 2:481–502

    Article  Google Scholar 

  55. Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289–293

    Article  CAS  PubMed  Google Scholar 

  56. Abu-Melha S, Edrees MM, Riyadh SM, Abdelaziz MR, Elfiky AA, Gomha SM (2020) Clean grinding technique: a facile synthesis and in Silico antiviral activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 main protease (Mpro). Molecules 25:4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Owen CD, Lukacik P, Strain-Damerell CM, Douangamath A, Powell AJ, Fearon D, Brandao-Neto J, Crawshaw AD, Aragao D, Williams M, Flaig R, Hall DR, McAuley KE, Mazzorana M, Stuart DI, von Delft F, Walsh MA (2019) SARS-CoV-2 main protease with unliganded active site. 2019-nCoV, coronavirus disease, COVID-19

  58. Raji H et al (2023) Antiviral Docking Analysis, Semisynthesis and Mechanistic Studies on the Origin of Stereo- and Chemoselectivity in Epoxidation Reaction of α’-trans-Himachalene. J Mol Liq 385:122204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP2023R367), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors extend their appreciation to the Researchers Supporting Project number (RSP2023R367), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

FA, ZO and YH: Article writing. AE, SA: numerical calculations and acquisition of data; HEA, AS, AZ: Final review and editing. ( All authors: analysis and interpretation of data and drafting the article)

Corresponding author

Correspondence to Abdellah Zeroual.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and no competing interests exist.

Ethical Approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained fromall participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the acknowledgement section and funding section the project number was incorrectly given as RSP2023R56, but should have been RSP2023R367.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26154.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asserne, F., Ouahdi, Z., Hakmaoui, Y. et al. Molecular Docking, Regio, Chemo and Stereoselectivity Study of the [3 + 2] Cycloaddition Reaction Between Pyridazi-3-one and Nitrilimine. Chemistry Africa 7, 53–62 (2024). https://doi.org/10.1007/s42250-023-00735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00735-y

Keywords

Navigation