Skip to main content

Advertisement

Log in

Integrative Validation Method of Roflumilast by Quantification and Detection in Lipid-Nanoparticles via Reverse Phase HPLC

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Purpose

The aim of current study is to develop an accurate, ideal, and precise Reverse-Phase HPLC (High-Performance Liquid Chromatography) method for detecting and quantifying roflumilast (ROF) in Lipid-nanoparticles for the very first time. Nowadays, HPLC is an extensively utilized quantitative analytical technology in the pharmaceutical sciences.

Method

RP HPLC (Shimadzu 20A) ROF detection method was validated with a mobile phase of distilled water and acetonitrile having 40:60 concentrations. Samples were analyzed via isocratic elution of 10 μl injection volumes, a PDA detector, using a C18 Backmann column silica column (4.6*250-mm-wide) as the stationary phase and the ambient temperature of the column was sustained at 45 °C with 35 MPa max pressure. A flow rate of 1 ml/min was run over 15 min (run time) and ROF was observed at a wavelength of 254 nm with a linearity range of 70–130% (40–300 µg).

Results

All HPLC analytical parameters accuracy, precision, linearity, and range were studied and optimized according to ICH guidelines. The retention time of Lipid-nanoparticles of Rof was 7.1 ± 0.02 min and approximately 100 percent accuracy, specificity and precision were achieved with this method. The values of limit-of-detection (LOD) and limit-of-quantification-(LOQ)-were found to be  – 0.0041 and 0.031 µg/ml respectively.

Conclusion

This validated analytical method was so sensitive and site-specific for the verification of roflumilast in lipid-based formulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu Q, Qi L, Li H, Mao L, Yang M, Xie R, Yang X, Wang J, Zhang Z, Kong J (2017) Roflumilast reduces cerebral inflammation in a rat model of experimental subarachnoid hemorrhage. Inflammation 40(4):1245–1253. https://doi.org/10.1007/s10753-017-0567-8

    Article  CAS  PubMed  Google Scholar 

  2. Kumar N, Goldminz AM, Kim N, Gottlieb AB (2013) Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med 11(1):1–8. https://doi.org/10.1186/1741-7015-11-96

    Article  CAS  Google Scholar 

  3. Bhat A, Tan V, Heng B, Lovejoy DB, Sakharkar MK, Essa MM, Chidambaram SB, Guillemin GJ (2020) Roflumilast, a cAMP-specific phosphodiesterase-4 inhibitor, reduces oxidative stress and improves synapse functions in human cortical neurons exposed to the excitotoxin quinolinic acid. ACS Chem Neurosci 11(24):4405–4415. https://doi.org/10.1021/acschemneuro.0c00636

    Article  CAS  PubMed  Google Scholar 

  4. Schepers M, Tiane A, Paes D, Houben E, Bruno O, Brullo C, Hellings N, Prickaerts J, Vanmierlo T (2019) Phosphodiesterase 4D inhibition boosts remyelination in multiple sclerosis. In Front Neurosci Conference Abstract: 13th National Congress of the Belgian Society for Neuroscience. Front Neurosci. https://doi.org/10.3389/conf.fnins

    Article  Google Scholar 

  5. Adeniyi AG, Ighalo JO, Onifade DVJCA (2020) Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and Albedo: product quality and potential applications. Chem Africa 3(2):439–448. https://doi.org/10.1007/s42250-020-00119-6

    Article  CAS  Google Scholar 

  6. Tasdelen AM, MAJCA (2019) Click chemistry in macromolecular design: complex architectures from functional polymers. Chem Africa 2(2):195–214. https://doi.org/10.1007/s42250-018-0030-8

    Article  Google Scholar 

  7. Haruna A, Yahaya SMJCA (2021) Recent advances in the chemistry of bioactive compounds from plants and soil microbes: a review. Chem Africa 4(2):231–248. https://doi.org/10.1007/s42250-020-00213-9

    Article  CAS  Google Scholar 

  8. Amole KL, Bello IA, Oyewale AOJCA (2019) Synthesis, characterization and antibacterial activities of new fluorinated chalcones. Chem Africa 2:47–55. https://doi.org/10.1007/s42250-019-00043-4

    Article  CAS  Google Scholar 

  9. Thappali SR, Varanasi KV, Veeraraghavan S, Vakkalanka SKV (2012) Simultaneous quantitation of IC87114, roflumilast and its active metabolite roflumilast N-oxide in plasma by LC-MS/MS: application for a pharmacokinetic study. J Mass Spectrom 47(12):1612–1619. https://doi.org/10.1002/jms.3103

    Article  CAS  PubMed  Google Scholar 

  10. Pinheiro MS, Marins RdCEE, Cabral LM, de Sousa VP (2018) Development and validation of a RP-HPLC method for Roflumilast and its degradation products. J Liq Chromatogr Relat 41(5):223–231. https://doi.org/10.1080/10826076.2018.1436067

    Article  CAS  Google Scholar 

  11. Mir M, Ahmed N, Rehman A (2017) Biointerfaces, Recent applications of PLGA based nanostructures in drug delivery. Colloids Surfaces B Biointerfaces 159:217–231. https://doi.org/10.1016/j.colsurfb.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17(17–18):928–934. https://doi.org/10.1016/j.drudis.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  13. Mpanyakavili A, Mwankuna C, Mabiki F, Styrishave BJCA (2022) LC–MS/MS method for determination of non-opioid analgesics adulterants in herbal medicines. Chem Africa 1–14. https://link.springer.com/article/https://doi.org/10.1007/s42250-022-00457-7

  14. Lesnefsky EJ, Stoll MS, Minkler PE, Hoppel CL (2000) Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal Biochem 285(2):246–254. https://doi.org/10.1006/abio.2000.4783

    Article  CAS  PubMed  Google Scholar 

  15. Mazzella N, Molinet J, Syakti AD, Dodi A, Doumenq P, Artaud J, Bertrand JC (2004) Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J Lipid Res 45(7):1355–1363. https://doi.org/10.1194/jlr.d300040-jlr200

    Article  CAS  PubMed  Google Scholar 

  16. Christie WW (1998) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. JJ Lipid Res. 26(4):507–512. https://doi.org/10.1016/S0022-2275(20)34367-4

    Article  Google Scholar 

  17. Roces CB, Kastner E, Stone P, Lowry D, Perrie Y (2016) Rapid quantification and validation of lipid concentrations within liposomes. Pharmaceutics 8(3):29. https://doi.org/10.3390/pharmaceutics8030029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mir M, Permana AD, Tekko IA, McCarthy HO, Ahmed N, Donnelly RF (2020) Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: a promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds. Int J Pharm. 587:119643. https://doi.org/10.1016/j.ijpharm.2020.119643

    Article  CAS  PubMed  Google Scholar 

  19. Handels R, Grimm Blokland A, Possemis N, Ramakers I, Sambeth A, Verhey F, Vos SM, Joore JJAS (2023) The value of maintaining cognition in patients with mild cognitive impairment: The innovation headroom and potential cost-effectiveness of roflumilast. Alzhiemers Dimentia 4:341–359. https://doi.org/10.1002/alz.13001

    Article  Google Scholar 

  20. Ayad R, Keskinkaya HB, Atalar MN, Lefahal M, Zaabat N, Makhloufi EH, Demirtas I,Trifa W, Akkal S, Medjroubi KJCA (2023) Jurinea humilis DC. Polar extract: HPLC analysis, photoprotective, antioxidant activities and bioactive content. Chem Africa 6(2):827–836. https://link.springer.com/article/https://doi.org/10.1007/s42250-022-00525

  21. Avula P, Galla R, Adepu GS, Vemanaboina HB, Tyagarajan S (2021) Development and validation of stability indicating rp-hplc method for estimation of roflumilast in tablet dosage form. Res J Pharm Technol 14(2):863–868. https://doi.org/10.5958/0974-360X.2021.00153.0

    Article  Google Scholar 

  22. Mahmoud AA, Elkasabgy NA, Abdelkhalek AA (2018) Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci 122:64–76. https://doi.org/10.1016/j.ejps.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  23. Ismaiel OA, Zhang T, Jenkins RG, Karnes HT (2010) Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J Chromatogr B. 878(31):3303–3316. https://doi.org/10.1016/j.jchromb.2010.10.012

    Article  CAS  Google Scholar 

  24. Wani TA, Bakheit AH, Ansari MN, Al-Majed AR, Al-Qahtani BM, Zargar S (2018) Spectroscopic and molecular modeling studies of binding interaction between bovine serum albumin and roflumilast. Drug Des Dev Ther 8:2627–2634. https://doi.org/10.2147/dddt.s169697

    Article  CAS  Google Scholar 

  25. Nicolson GL, Ferreira de Mattos GJB (2022) Fifty years of the fluid-mosaic model of biomembrane structure and organization and its importance in biomedicine with particular emphasis on membrane lipid replacement. Biomedicine 10(7):1711. https://doi.org/10.3390/biomedicines10071711

    Article  CAS  Google Scholar 

  26. Liu L, Liu Q, Wang Y, Yuan Y, Xie F (2023) Development of polyanion-metal ion solution systems to overcome phospholipids-related matrix effects in LC-MS/MS-based bioanalysis. Analytica Chimica Acta. 1250:340973. https://doi.org/10.1016/j.aca.2023.340973

    Article  CAS  PubMed  Google Scholar 

  27. Nicolson GL, Ferreira de Mattos G (2022) Fifty years of the fluid-mosaic model of biomembrane structure and organization and its importance in biomedicine with particular emphasis on membrane lipid replacement. Biomedicines 10(7):1711. https://doi.org/10.3390/biomedicines10071711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Güray TJQN (2019) A new validated method for determination of roflumilast in tablet by CZE-UV. Quimica nova. 42(5):522–526 https://doi.org/10.21577/0100-4042.20170371

  29. Yabré M, Ferey L, Somé LT, Gaudin K (2018) Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 23(5):1065. https://doi.org/10.3390/molecules23051065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Godbole MD, Mathur VB (2018) Selection of phospholipid and method of formulation for optimum entrapment and release of lamivudine from liposome. JDDT. 8:175–183 https://doi.org/10.22270/jddt.v8i5-s.1935.

  31. Kowalska MM, Woźniak M, Kijek P, Mitrosz SJ, Turek P (2022) Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product. Sci Rep 12(1):1–9. https://doi.org/10.1038/s41598-021-99269-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shishodia T, Grover P, Nagarajan K, Bhardwaj M, Chopra B (2023) Development and validation of robust, highly sensitive and stability-indicating RP-HPLC method for estimation of deferasirox and its degradation products. J Chromatogr Sci 32:175–185. https://doi.org/10.1093/chromsci/bmad032

    Article  Google Scholar 

  33. Yu HY, Park SE, Chun HS, Rho JR, Ahn S (2022) Phospholipid composition analysis of Krill oil through HPLC with ELSD: development, validation, and comparison with 31P NMR spectroscopy. J Food Compos Anal 3:104408. https://doi.org/10.1016/j.jfca.2022.104408

    Article  CAS  Google Scholar 

  34. Moussa BA, El-Zaher AA, El-Ashrey KK, Fouad MA (2019) Roflumilast analogs with improved metabolic stability, plasma protein binding, and pharmacokinetic profile. Drug Test Anal 11(6):886–897. https://doi.org/10.1002/dta.2562

    Article  CAS  PubMed  Google Scholar 

  35. Ismaiel OA, Halquist MS, Elmamly MY, Shalaby A, Karnes HT (2008) Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations. J Chromatogr B 875(2):333–343. https://doi.org/10.1016/j.jchromb.2008.08.032

    Article  CAS  Google Scholar 

  36. Han ND, Anwar, Hama N, Kobayashi T, Suzuki H, Takahashi H, Wada H, Otsuka R, Baghdadi M, Seino Ki (2020) Bromodomain-containing protein 4 regulates interleukin-34 expression in mouse ovarian cancer cells. Inflamm Regener 40 (1):1–10. https://link.springer.com/article/https://doi.org/10.1186/s41232-020-00129-4

  37. Pan LR, LoBrutto KYV, Thompson R (2004) Influence of inorganic mobile phase additives on the retention, efficiency and peak symmetry of protonated basic compounds in reversed-phase liquid chromatography. J Chromatogr A 1049(1–2):63–73. https://doi.org/10.1016/j.chroma.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  38. Smith NLA, Patel R, Andrews R, Paterson S (2017) Validated method for the screening and quantification of baclofen, gabapentin and pregabalin in human post-mortem whole blood using protein precipitation and liquid chromatography–tandem mass spectrometry. J Anal Toxicol 41(5):441–450. https://doi.org/10.1093/jat/bkx019

    Article  CAS  PubMed  Google Scholar 

  39. Zimmer D (2014) New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA guidelines: chromatographic methods and ISR. Bioanalysis 6(1):13–19. https://doi.org/10.4155/bio.13.298

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed.

Ethics declarations

Conflict of Interest

All Authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhery, I., Malik, M.N., Ur-Rehman, T. et al. Integrative Validation Method of Roflumilast by Quantification and Detection in Lipid-Nanoparticles via Reverse Phase HPLC. Chemistry Africa 7, 131–140 (2024). https://doi.org/10.1007/s42250-023-00719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00719-y

Keywords

Navigation