Skip to main content
Log in

On the Structural, Thermal, Electrical and Mechanical Properties of Compacted Bentonite Material

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In the present work, we report the mechanical, thermal, and electrical behavior of a pure Moroccan bentonite clay as well as compacted sand (S), cement (C) and lime (L) based on bentonite (B) with a sand content maintained at 80% and a compaction intensity of 80 bars. The impedance spectroscopy data shows a semiconducting behavior for temperatures greater than 300 °C. The corresponding activation energies for the conduction and relaxation processes are calculated in the order of 706 meV and 728 meV, respectively. The dry density of the S-C-B-L mixtures shows a maximum in the range of 10% to 15% of water content. Thermal conductivity (λ), maximum compressive stress (Rcmax), apparent density and porosity as a function of the cement and lime content were analyzed. A maximum in Rcmax is observed for the sample F2 (S80C5B15L0 with 10% water content) with 5% of cement content, which corresponds to a maximum in λ and a minimum in porosity. This result is confirmed by the dynamic thermal characteristics describing the thermal behavior of our materials according to the standard (NF EN ISO 13786, 2008), since the composition F2 has a lower damping coefficient and a higher internal capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Rakić V, Rajić N, Daković A, Auroux A (2013) Microporous Mesoporous Mater 166:185

    Article  Google Scholar 

  2. Sahu M, Reddy VRM, Park C, Sharma P (2021) Sol Energy 230:13

    Article  CAS  Google Scholar 

  3. Nugroho HS, Refantero G, Septiani NLW, Iqbal M, Marno S, Abdullah H, Prima EC, Nugraha, Yuliarto B (2022) J Ind Eng Chem 105:83

    Article  CAS  Google Scholar 

  4. Dlamini MC, Maubane-Nkadimeng MS, Moma JA (2021) J Environ Chem Eng 9:106546

    Article  CAS  Google Scholar 

  5. Akpokodje EG (2015) Q J Eng Geol Hydrogeol 18:173

    Article  Google Scholar 

  6. Boffoue MO, Kouadio KC, Kouakou CH (2015) Afr Sci Rev Int Sci Technol 11:35

    Google Scholar 

  7. Mindaugas Z, Šarūnas S, Giedrius ŠtupŠinskas (2021) Open Geosci 13:988

    Article  Google Scholar 

  8. Bilkees R, Khan AA, Javed M, Kazmi J, Mohamed MA, Khan MN, Abid AY, Majeed A (2021) Mater Sci Eng B 269:115153

    Article  CAS  Google Scholar 

  9. Ganaie M, Zulfequar M (2021) Microelectron Reliab 116:114018

    Article  CAS  Google Scholar 

  10. Elliott SR (1987) Adv Phys 36:135

    Article  CAS  Google Scholar 

  11. El-Mallah HM (2012) Acta Phys Pol A 122:174

    Article  CAS  Google Scholar 

  12. Essaleh L, Amhil S, Wasim SM, Marín G, Choukri E, Hajji L (2018) Phys E Low Dimens Syst Nanostruct 99:37

    Article  CAS  Google Scholar 

  13. Chen RH, Wang RJ, Chen TM, Shern CS (2000) J Phys Chem Solids 61:519

    Article  CAS  Google Scholar 

  14. Mao W, Xiong B, Li Q, Zhou Y, Yin C, Liu Y, He C (2015) Phys Lett A 379:1946

    Article  CAS  Google Scholar 

  15. Bentonit im Tiefbau—Ein Handbuch für die Baupraxis (1998) Mannheim, Ibeco Bentonit-Technologie GmbH

  16. Praetorius S, Schößer B (2017) Bentonite handbook lubrication for pipe jacking. Wilhelm Ernst & Sohn, Berlin

    Book  Google Scholar 

  17. Pusch R, Yong RN (2006) Microstructure of smectite clays and engineering performance. Taylor & Francis, London

    Book  Google Scholar 

  18. Al Kausor M, Gupta SS, Bhattacharyya KG, Chakrabortty D (2022) Inorg Chem Commun 143:109686

    Article  CAS  Google Scholar 

  19. Ihssan B (2018) Modification de la Bentonite de Maghnia et Applications dans l’adsorption de colorants textiles et de métaux lourds, Doctorate's Thesis, Tlemcen, Algeria

  20. Grim R (1968) Clay mineralogy. McGraw-Hill Book Company, New York, p 596

    Google Scholar 

  21. Shattar SFA, Zakaria NA, Foo KY (2016) Desalin Water Treat 57:13645

    Article  CAS  Google Scholar 

  22. do Nascimento GM (2016) Clays, clay minerals and ceramic materials based on clay minerals. Published by ExLi4EvA

  23. Veblen DR, Guthrie GD Jr, Livi KJT, Reynolds RC Jr (1990) Clays Clay Min 38:1

    Article  CAS  Google Scholar 

  24. Abdel Zaher MS, Abdel Wahab SM, Taha MH, Masoud AM (2018) J Membr Sci Technol 8:1

    Google Scholar 

  25. Awinash K, Pradip L (2020) Mater Today Proc 22:737

    Article  Google Scholar 

  26. Hein A, Müller NS, Day PM, Kilikoglou V (2008) Thermochim Acta 480:35

    Article  CAS  Google Scholar 

  27. Randazzo L, Montana G, Hein A, Castiglia A, Rodonò G, Donato DI (2016) Appl Clay Sci 132–133:498

    Article  Google Scholar 

  28. Hein A, Karatasios I, Müller NS, Kilikoglou V (2013) Thermochim Acta 573:87

    Article  CAS  Google Scholar 

  29. Maillet D, André S, Batsale JC, Degiovanni A, Moyne C (2000) Wiley, Chichester

  30. Sambou V (2008) Unsteady heat transfers: towards an optimization of building walls. Ph.D. thesis prepared at Paul Sabatier University, France

Download references

Author information

Authors and Affiliations

Authors

Contributions

ME and RB conceptualization, methodology, software, formal analysis, validation, visualization, writing—original draft, writing—review and editing, investigation, project administration, data curation. YC supervision, resources. MM resources. AB resources. MO resources. SB visualization.

Corresponding author

Correspondence to Mohamed Essaleh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essaleh, M., Bouferra, R., Chihab, Y. et al. On the Structural, Thermal, Electrical and Mechanical Properties of Compacted Bentonite Material. Chemistry Africa 6, 3195–3206 (2023). https://doi.org/10.1007/s42250-023-00693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00693-5

Keywords

Navigation