Skip to main content
Log in

Optimization of a Binary Dye Mixture Adsorption by Moroccan Clay Using the Box-Behnken Experimental Design

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work the Removal of the basic blue 41 and crystal violet mixture was studied using Moroccan clay as an adsorbent. The morphology and structure of this local adsorbent were examined using different analysis techniques and physicochemical measures, including X-Ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), surface area (BET) and point of zero charge (pHpzc). The effects of three operating variables on removal efficiency of dye mixture were investigated and analyzed using Response surface methodology based on Box-Behnken design, namely: initial concentration of the dye mixture, adsorbent dose and solution pH. The proposed model (quadratic) was approved with high correlation coefficients (R2 = 0.9964), (R2adj = 0.9919), and a value of the percentage absolute error of deviation (AED) equal to 0.792. Furthermore, the p-value of the model was < 0.0001 and F-value of 217.37 implies the model is highly significant. The linear effects of dye mixture concentration and clay dose were the principal determining factors that affected the dye removal efficiency on local clay According to the analysis of variance (ANOVA). A significant dye removal rate (approximately 99% after only 50 min) was achieved under the following optimized conditions: dye concentration of 78.14 mg/L, adsorbent dose of 1.3 g/L and pH = 8.12. Practically, the removal rate was found to range from 55 to 99%. The isotherms and kinetics studies show that the adsorption process follows the Langmuir isotherm model (R2 = 0.98), and the adsorption is well described by the pseudo second order kinetic (R2 = 0.99), the calculated thermodynamic parameters revealed that the adsorption was endothermic. The present study showed that the tested local clay has significant adsorbing characteristics displaying high efficiency in removing basic blue 41 and crystal violet mixture. Thus, the germination test was initiated to confirm the low toxicity of the treated water after the adsorption process. The regeneration experiments were also carried out and it was found that the tested clay was regenerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Desore A, Narula SA (2018) An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain 20:1439–1459. https://doi.org/10.1007/s10668-017-9949-1

    Article  Google Scholar 

  2. Muthu SS (2017) Sustainability in the textile industry, Springer Singapore. Singapore. https://doi.org/10.1007/978-981-10-2639-3

    Article  Google Scholar 

  3. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  4. Wang S, Zhu ZH (2006) Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. J Hazard Mater 136:946–952. https://doi.org/10.1016/j.jhazmat.2006.01.038

    Article  CAS  PubMed  Google Scholar 

  5. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. https://doi.org/10.1016/j.jhazmat.2011.10.041

    Article  CAS  PubMed  Google Scholar 

  6. Sharma P, Das MR (2012) Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 31:109–119

    Google Scholar 

  7. Abidi N, Errais E, Duplay J, Berez A, Jrad A, Schäfer G, Ghazi M, Semhi K, Trabelsi-Ayadi M (2015) Treatment of dye-containing effluent by natural clay. J Clean Prod 86:432–440. https://doi.org/10.1016/j.jclepro.2014.08.043

    Article  CAS  Google Scholar 

  8. Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153. https://doi.org/10.1016/j.jhazmat.2012.09.026

    Article  CAS  PubMed  Google Scholar 

  9. Parsaa JB, Abbasib M (2007) Decolorization of synthetic and real polluted water by indirect electrochemical oxidation process. Acta Chim Slov 54:792–796

    Google Scholar 

  10. Aguiar JE, de Oliveira JCA, Silvino PFG, Neto JA, Silva IJ, Lucena SMP (2016) Correlation between PSD and adsorption of anionic dyes with different molecular weigths on activated carbon. Colloids Surfaces A Physicochem Eng Asp 496:125–131. https://doi.org/10.1016/j.colsurfa.2015.09.054

    Article  CAS  Google Scholar 

  11. Tanji K, Navio JA, Martín-Gómez AN, Hidalgo MC, Jaramillo-Páez C, Naja J, Hassoune H, Kherbeche A (2020) Role of Fe(III) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of rhodamine B and caffeine. Chemosphere 241:125009. https://doi.org/10.1016/j.chemosphere.2019.125009

    Article  CAS  PubMed  Google Scholar 

  12. Fahoul Y, Zouheir M, Tanji K, Kherbeche A (2022) Synthesis of a novel ZnAl2O4/CuS nanocomposite and its characterization for photocatalytic degradation of acid red 1 under UV illumination. J Alloys Compd 889:161708. https://doi.org/10.1016/j.jallcom.2021.161708

    Article  CAS  Google Scholar 

  13. Vandevivere PC, Bianchi R, Verstraete W (1998) Review: Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4%3c289::AID-JCTB905%3e3.3.CO;2-R

    Article  CAS  Google Scholar 

  14. Zouheir M, Assila O, Tanji K, El Gaidoumi A, Araña J, Doña Rodríguez JM, Smått J-H, Huynh T-P, Kherbeche A (2021) Bandgap optimization of sol–gel-derived TiO2 and its effect on the photodegradation of formic acid. Nano Futur 5:025004. https://doi.org/10.1088/2399-1984/abfb7d

    Article  CAS  Google Scholar 

  15. Hussein TK, Jasim NA (2021) A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Mater Today Proc 42:1946–1950. https://doi.org/10.1016/j.matpr.2020.12.240

    Article  CAS  Google Scholar 

  16. Dra A, Tanji K, Arrahli A, Iboustaten EM, El Gaidoumi A, Kherchafi A, Chaouni Benabdallah A, Kherbeche A (2020) Corrigendum to “Valorization of Oued Sebou Natural Sediments (Fez-Morocco Area) as Adsorbent of Methylene Blue Dye: Kinetic and Thermodynamic Study.” Sci World J. https://doi.org/10.1155/2020/2187129

    Article  Google Scholar 

  17. Dra A, Tanji K, Arrahli A, Iboustaten EM, El Gaidoumi A, Kherchafi A, Benabdallah AC, Kherbeche A (2020) Valorization of Oued Sebou Natural Sediments (Fez-Morocco Area) as Adsorbent of Methylene Blue Dye : Kinetic and Thermodynamic Study. Sci World J 2020:2187129. https://doi.org/10.1155/2020/2187129

    Article  CAS  Google Scholar 

  18. Gholami-Borujeni F, Mahvi AH, Naseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M (2011) Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Res J Chem Environ 15:217–222

    CAS  Google Scholar 

  19. Sadaf S, Bhatti HN, Nausheen S, Noreen S (2014) Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: Equilibrium and breakthrough studies. Arch Environ Contam Toxicol 66:557–571. https://doi.org/10.1007/s00244-013-9992-3

    Article  CAS  PubMed  Google Scholar 

  20. Mahmoud A (2017) Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal. J Clean Prod 145:105–113. https://doi.org/10.1016/j.jclepro.2017.01.046

    Article  CAS  Google Scholar 

  21. Khalilzadeh Shirazi E, Metzger JW, Fischer K, Hassani AH (2020) Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids Surfaces A Physicochem Eng Asp 598:124807. https://doi.org/10.1016/j.colsurfa.2020.124807

    Article  CAS  Google Scholar 

  22. Chaari I, Medhioub M, Jamoussi F, Hamzaoui AH (2020) Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye: Characterization, adsorption study and activation mechanism. J Mol Struct 1223:128944. https://doi.org/10.1016/j.molstruc.2020.128944

    Article  CAS  Google Scholar 

  23. Dehmani Y, El Khalki O, Mezougane H, Abouarnadasse S (2021) Comparative study on adsorption of cationic dyes and phenol by natural clays. Chem Data Collect. 33:100674. https://doi.org/10.1016/j.cdc.2021.100674

    Article  CAS  Google Scholar 

  24. Saputra OA, Nauqinida M, Pujiasih S, Kusumaningsih T, Pramono E (2021) Improvement of anionic and cationic dyes removal in aqueous solution by Indonesian agro-waste oil palm empty fruit bunches through silylation approach. Groundw Sustain Dev 13:100570. https://doi.org/10.1016/j.gsd.2021.100570

    Article  Google Scholar 

  25. Tatarchuk T, Paliychuk N, Bitra RB, Shyichuk A, Naushad MU, Mironyuk I, Ziółkowska D (2019) Adsorptive removal of toxic methylene blue and acid orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents. Desalin Water Treat 150:374–385. https://doi.org/10.5004/dwt.2019.23751

    Article  CAS  Google Scholar 

  26. Sarkar B, Rusmin R, Ugochukwu UC, Mukhopadhyay R, Manjaiah KM (2018) Modified clay minerals for environmental applications, Elsevier Inc., https://doi.org/10.1016/B978-0-12-814617-0.00003-7.

  27. Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Suresh Kumar B (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. J Clean Prod 272:122636. https://doi.org/10.1016/j.jclepro.2020.122636

    Article  CAS  Google Scholar 

  28. Ismadji Suryadi ES, Felycia A (2015) Ayucitra, clay materials for environmental remediation. Springer International Publishing. https://doi.org/10.1007/978-3-319-16712-1_1

    Article  Google Scholar 

  29. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  30. Santos SCR, Oliveira ÁFM, Boaventura RAR (2016) Bentonitic clay as adsorbent for the decolourisation of dyehouse effluents. J Clean Prod 126:667–676. https://doi.org/10.1016/j.jclepro.2016.03.092

    Article  CAS  Google Scholar 

  31. Satlaoui Y, Trifi M, Fkih Romdhane D, Charef A, Azouzi R (2019) Removal properties, mechanisms, and performance of methyl green from aqueous solution using raw and purified sejnane clay type. J Chem. https://doi.org/10.1155/2019/4121864

    Article  Google Scholar 

  32. Barakan S, Aghazadeh V (2021) The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Environ Sci Pollut Res 28:2572–2599. https://doi.org/10.1007/s11356-020-10985-9

    Article  CAS  Google Scholar 

  33. Santos SCR, Boaventura RAR (2016) Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch mode. J Environ Chem Eng 4:1473–1483. https://doi.org/10.1016/j.jece.2016.02.009

    Article  CAS  Google Scholar 

  34. El-Khalfaouy R, Khallouk K, Elabed A, Addaou A, Laajeb A, Lahsini A (2022) Modeling and synthesis of carbon-coated LiMnPO4 cathode material: Experimental investigation and optimization using response surface methodology. J Electrochem Sci Eng. https://doi.org/10.5599/jese.1191

    Article  Google Scholar 

  35. Missana T, Alonso U, García-Gutiérrez M (2021) Evaluation of component additive modelling approach for europium adsorption on 2:1 clays: Experimental, thermodynamic databases, and models. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129877

    Article  PubMed  Google Scholar 

  36. Mosai AK, Tokwana BC, Tutu H (2022) Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PEST) study. Ecol Modell 465:109872. https://doi.org/10.1016/j.ecolmodel.2022.109872

    Article  CAS  Google Scholar 

  37. Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS (2021) Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network. J Mol Liq 328:115384. https://doi.org/10.1016/j.molliq.2021.115384

    Article  CAS  Google Scholar 

  38. Demirhan E (2020) Response surface methodology approach for adsorptive removal of Reactive Blue 19 onto green pea pod. Water Sci Technol 81:1137–1147. https://doi.org/10.2166/wst.2020.199

    Article  CAS  PubMed  Google Scholar 

  39. Feddal I, Mimanne G, Dellani A, Taleb S (2020) Synthesis and characterization of an adsorbent material: Application to textile dye elimination. Mater Today Proc 49:981–985. https://doi.org/10.1016/j.matpr.2021.08.105

    Article  CAS  Google Scholar 

  40. Hamzezadeh A, Rashtbari Y, Afshin S, Morovati M, Vosoughi M (2022) Application of low-cost material for adsorption of dye from aqueous solution. Int J Environ Anal Chem 102:254–269. https://doi.org/10.1080/03067319.2020.1720011

    Article  CAS  Google Scholar 

  41. Boulahbal M, Abderrahmane M, Canle M, Redouane-salah Z, Devanesan S, Alsalhi MS, Berkani M (2022) Chemosphere Removal of the industrial azo dye crystal violet using a natural clay : Characterization, kinetic modeling, and RSM optimization. Chemosphere 306:135516. https://doi.org/10.1016/j.chemosphere.2022.135516

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Luo M, Xie C, Li K, Hang F, Shi C, Doherty WOS (2022) Effective adsorption of colorants from sugarcane juice by Bagasse-Based Biochar-Hydroxyapatite composite. Foods 11:2171. https://doi.org/10.3390/foods11142171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trifi IM, Chaabane L, Dammak L, Baklouti L, Hamrouni B (2021) Response surface methodology for boron removal by donnan dialysis: Doehlert experimental design. Membranes (Basel) 11:731. https://doi.org/10.3390/membranes11100731

    Article  CAS  PubMed  Google Scholar 

  44. Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N (2016) Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl Clay Sci 119:385–392. https://doi.org/10.1016/j.clay.2015.11.008

    Article  CAS  Google Scholar 

  45. El Kassimi A, Boutouil A, El Himri M, Rachid Laamari M, El Haddad M (2020) Selective and competitive removal of three basic dyes from single, binary and ternary systems in aqueous solutions: A combined experimental and theoretical study. J Saudi Chem Soc 24:527–544. https://doi.org/10.1016/J.JSCS.2020.05.005

    Article  CAS  Google Scholar 

  46. Thiam A, Tanji K, Assila O, Zouheir M, Haounati R, Arrahli A, Abeid A, Lairini S, Bouslamti R, Zerouq F, Kherbeche A (2020) Valorization of date pits as an effective biosorbent for remazol brilliant blue adsorption from aqueous solution. J Chem 2020:14. https://doi.org/10.1155/2020/4173152

    Article  CAS  Google Scholar 

  47. Farcas F, Touzé P (2001) La spectrométrie infrarouge à transformée de Fourier (IRTF) Une méthode intéressante pour la caractérisation des ciments

  48. Boussaa SA, Kheloufi A, Boutarek NZ (2018) Caractérisation et valorisation du Quartz d’ Edough pour application photovoltaïque. Rev Des Energies Renouvelables 21 :391–396. https://doi.org/10.54966/jreen.v21i3.698.

  49. Jawad AH, Abdulhameed AS (2020) Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces Interfaces 18:100422. https://doi.org/10.1016/j.surfin.2019.100422

    Article  CAS  Google Scholar 

  50. Mondal NK, Kar S (2018) Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Appl Water Sci. https://doi.org/10.1007/s13201-018-0811-x

    Article  Google Scholar 

  51. Mir M, Ghoreishi SM (2015) Response surface optimization of biodiesel production via catalytic transesterification of fatty acids. Chem Eng Technol 38:835–834. https://doi.org/10.1002/ceat.201300328

    Article  CAS  Google Scholar 

  52. Schmit F (2014) Catalyseurs à base d’oxyde de manganèse pour l’oxydation en voie humide catalytique de la méthylamine [Manganese-based oxides catalysts for the catalytic wet air oxidation of methylamine-containing aqueous effluent], HAL open science

  53. Silva TL, Ronix A, Pezoti O, Souza LS, Leandro PKT, Bedin KC, Beltrame KK, Cazetta AL, Almeida VC (2016) Mesoporous activated carbon from industrial laundry sewage sludge: Adsorption studies of reactive dye Remazol Brilliant Blue R. Chem Eng J 303:467–476. https://doi.org/10.1016/j.cej.2016.06.009

    Article  CAS  Google Scholar 

  54. Zerhouni J, Filali FR, Bennani MN, Qabaqous O, Bouymajane A, Houssaini J, Allaoui S, Benhallam F (2021) Study of the effect of acid-base character of the lamellar double hydroxides “zn3al-co3” and of the “ghassoul” clay on their redox potential and antimicrobial activities, Iran. J Mater Sci Eng 18:1–13. https://doi.org/10.22068/ijmse.2202.

  55. Nabbou N, Benyagoub E, Belhachemi M, Boumelik M, Benyahia M (2021) Removal performance for thermotolerant coliforms and fecal streptococci from dairy effluents by Kenadsa’s natural green clay (Bechar-Algeria) in a fixed-bed column. Appl Water Sci 11:1–15. https://doi.org/10.1007/s13201-021-01441-1

    Article  CAS  Google Scholar 

  56. Khallouk K, Solhy A, Idrissi N, Flaud V, Kherbeche A, Barakat A (2020) Microwave-assisted selective oxidation of sugars to carboxylic acids derivatives in water over zinc-vanadium mixed oxide. Chem Eng J 385:123914. https://doi.org/10.1016/j.cej.2019.123914

    Article  CAS  Google Scholar 

  57. Xu HY, Qi SY, Li Y, Zhao Y, Li JW (2013) Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: Optimization by response surface methodology. Environ Sci Pollut Res 20:5764–5772. https://doi.org/10.1007/s11356-013-1578-0

    Article  CAS  Google Scholar 

  58. Almeida LC, Garcia-Segura S, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology. Appl Catal B Environ 103:21–30. https://doi.org/10.1016/J.APCATB.2011.01.003

    Article  CAS  Google Scholar 

  59. Herney-Ramirez J, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Ind Eng Chem Res 47:284–294. https://doi.org/10.1021/IE070990Y

    Article  CAS  Google Scholar 

  60. Nahali L, Miyah Y, Mejbar F, Benjelloun M, Assila O, Fahoul Y, Nenov V, Zerrouq F (2022) Assessment of Brilliant green and Eriochrome Black T dyes adsorption onto fava bean peels: kinetics, isotherms and regeneration study. Deswater Com. https://doi.org/10.5004/dwt.2022.27945

    Article  Google Scholar 

  61. Rashtbari Y, Hazrati S, Azari A, Afshin S, Fazlzadeh M, Vosoughi M (2020) A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv Powder Technol 31:1612–1623. https://doi.org/10.1016/j.apt.2020.02.001

    Article  CAS  Google Scholar 

  62. Mandal S, Alankar T, Hughes R, Marpu SB, Omary MA, Shi SQ (2022) Removal of hazardous dyes and waterborne pathogens using a nanoengineered bioadsorbent from hemp – Fabrication, characterization and performance investigation. Surfaces Interfaces 29:101797. https://doi.org/10.1016/j.surfin.2022.101797

    Article  CAS  Google Scholar 

  63. Yang J, Li M, Wang Y, Wu H, Ji N, Dai L, Li Y, Xiong L, Shi R, Sun Q (2019) High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal ions. J Agric Food Chem 67:13648–13657. https://doi.org/10.1021/acs.jafc.9b05063

    Article  CAS  PubMed  Google Scholar 

  64. You X, Wang R, Zhu Y, Sui W, Cheng D (2021) Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Ind Crops Prod 170:113687. https://doi.org/10.1016/j.indcrop.2021.113687

    Article  CAS  Google Scholar 

  65. Misra PK, Mishra BK, Somasundaran P (2005) Organization of amphiphiles: Part IV. Characterization of the microstructure of the adsorbed layer of decylethoxylene nonyl phenol. Colloids Surfaces A Physicochem Eng Asp 252:169–174. https://doi.org/10.1016/j.colsurfa.2004.08.076

    Article  CAS  Google Scholar 

  66. Ezzati R (2020) Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem Eng J 392:123705. https://doi.org/10.1016/j.cej.2019.123705

    Article  CAS  Google Scholar 

  67. Alorabi AQ, Hassan MS, Alam MM, Zabin SA, Alsenani NI, Baghdadi NE (2021) Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity. Nanomaterials. https://doi.org/10.3390/nano11112789

    Article  PubMed  PubMed Central  Google Scholar 

  68. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/fe3 o4 magnetic nanocomposite from aqueous solutions: A kinetic, equilibrium and thermodynamic study. Molecules 26:1–19. https://doi.org/10.3390/molecules26082241

    Article  CAS  Google Scholar 

  69. Avila MC, Lick ID, Comelli NA, Ruiz ML (2021) Adsorption of an anionic dye from aqueous solution on a treated clay. Groundw Sustain Dev 15:100688. https://doi.org/10.1016/j.gsd.2021.100688

    Article  Google Scholar 

  70. Aragaw TA, Alene AN (2022) A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics. Emerg Contam 8:59–74. https://doi.org/10.1016/j.emcon.2022.01.002

    Article  CAS  Google Scholar 

  71. El Kassimi A, Achour Y, El Himri M, Laamari R, El Haddad M (2021) Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: experimental and theoretical study using DFT method. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1873306

    Article  Google Scholar 

  72. Loqman A, El Bali B, El Gaidoumi A, Boularbah A, Kherbeche A, Lützenkirchen J (2021) The first application of moroccan perlite as industrial dyes removal. Silicon 14:2813–2838. https://doi.org/10.1007/S12633-021-01056-W

    Article  Google Scholar 

  73. Zhang T, Wang W, Zhao Y, Bai H, Wen T, Kang S, Song G, Song S, Komarneni S (2021) Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem Eng J 420:127574. https://doi.org/10.1016/j.cej.2020.127574

    Article  CAS  Google Scholar 

  74. Ashrafi SD, Kamani H, Soheil Arezomand H, Yousefi N, Mahvi AH (2016) Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat 57:14051–14059. https://doi.org/10.1080/19443994.2015.1060903

    Article  CAS  Google Scholar 

  75. Humelnicu I, Băiceanu A, Ignat ME, Dulman V (2017) The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Proc Saf Environ Prot 105:274–287. https://doi.org/10.1016/j.psep.2016.11.016

    Article  CAS  Google Scholar 

  76. Pavlović MD, Buntić AV, Mihajlovski KR, Šiler-Marinković SS, Antonović DG, Radovanović Ž, Dimitrijević-Branković SI (2014) Rapid cationic dye adsorption on polyphenol-extracted coffee grounds-A response surface methodology approach. J Taiwan Inst Chem Eng 45:1691–1699. https://doi.org/10.1016/j.jtice.2013.12.018

    Article  CAS  Google Scholar 

  77. Loqman A, El Bali B, Lützenkirchen J, Weidler PG, Kherbeche A (2017) Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology. Appl Water Sci 7:3649–3660. https://doi.org/10.1007/s13201-016-0509-x

    Article  CAS  Google Scholar 

  78. Oladipo AA, Gazi M (2014) Enhanced removal of crystal violet by low cost alginate/acid activated bentonite composite beads: Optimization and modelling using non-linear regression technique. J Water Process Eng 2:43–52. https://doi.org/10.1016/j.jwpe.2014.04.007

    Article  Google Scholar 

Download references

Funding

This work had not received any funding from any Organization or Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Tanji.

Ethics declarations

Conflict of Interest

All authors certify that they have no conflicts of interests associated with this publication and no funding was received for this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souhassou, H., Khallouk, K., El Khalfaouy, R. et al. Optimization of a Binary Dye Mixture Adsorption by Moroccan Clay Using the Box-Behnken Experimental Design. Chemistry Africa 6, 2011–2027 (2023). https://doi.org/10.1007/s42250-023-00608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00608-4

Keywords

Navigation