Skip to main content
Log in

A Comparative Analysis on the Concentration and Potential Risk of Polycyclic Aromatic Hydrocarbons in Surface Water, Sediment and Soil from a Non-crude Oil and a Crude Oil Explosion Site in the Niger Delta, Nigeria

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this study, a comparative evaluation of the concentration, sources and potential health risk of polycyclic aromatic hydrocarbons (PAHs) in surface water, sediments and soils from a non-crude oil (Udu River) and a crude oil explosion site (Okpare River) in the Niger Delta area of Nigeria were determined. Samples were extracted using a mixture of n-hexane and methylene chloride. Water samples were extracted using a separatory funnel while sediment and soil samples were extracted with the aid of a sonicator. Gas chromatography–mass spectrometry was used for quantification of PAHs in the extracts. The total concentration of Ʃ16PAHs in surface waters ranged from < 0.01 to 19,920 µg L−1, and from 2130 to 11,070 µg L−1 for the Udu and Okpare Rivers, respectively. For sediments, PAHs concentration (µg kg−1) ranged from 390 to 4570 in Udu River and from 3940 to 8610 in Okpare River, while for soils, PAHs concentration (µg kg−1) ranged from 346 to 9114 in Udu River and from 110 to 4842 in Okpare River. High molecular weight (HMW) PAHs were predominant in surface waters of these Rivers. The HMW PAHs were also the most prevalent in sediments of Okpare River, while low molecular weight (LMW) PAHs occurred the most in soils of the Udu River. Principal component analysis revealed that PAHs in sediments and soils originated primarily from high-temperature processes. Incremental lifetime carcinogenic risk assessment showed very high potential carcinogenicity in humans arising from the intentional and incidental ingestion of water from the studied Rivers. Comparatively, the concentration of Ʃ16PAHs in the studied matrices were significantly higher in Okpare River relative to Udu River, with increased potential health risk. Crude oil explosions are therefore a significant point source of PAHs in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data associated with this research are contained in the manuscript.

References

  1. Iwegbue CMA, Obi G, Agambi E, Ogala JE, Omo-irabor OO, Martincingh BS (2016) Concentrations and health risk assessment of polycyclic aromatic hydrocarbons in soils of an urban environment in the Niger Delta. Nigeria Toxicol Environ Health Sci 8(3):221–233. https://doi.org/10.1007/s13530-016-0279-8

    Article  Google Scholar 

  2. Nikitha T, Satyaprakash M, Satya Vani S, Sadhana B, Padal SB (2017) A review on polycyclic aromatic hydrocarbons: their transport, fate and biodegradation in the environment. Int J Curr Microbiol Appl Sci 6(4):1627–1639. https://doi.org/10.20546/ijcmas.2017.604.199

    Article  CAS  Google Scholar 

  3. Tesi GO, Iniaghe PO, Lari B, Obi-iyeke G, Ossai JC (2021) Polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables consumed in southern Nigeria: concentration, risk assessment and source apportionment. Environ Monit Assess 193:443. https://doi.org/10.1007/10661-021-09217-5

    Article  CAS  PubMed  Google Scholar 

  4. Witt G (1995) Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar Pollut Bull 31(4):237–248. https://doi.org/10.1016/0025-326X(95)00174-L

    Article  CAS  Google Scholar 

  5. Wang X, Thai PK, Li Y, Li Q, Wainwright D, Hawker DW, Mueller JF (2016) Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source. Environ Pollut 213:223–231. https://doi.org/10.1016/j.envpol.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  6. Varansi U (1989) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton

    Google Scholar 

  7. Nasr IN, Arief MH, Abdel-Aleem AH, Malhat FM (2010) Polycyclic aromatic hydrocarbons (PAHs) in aquatic environment at El Menofiya Governorate. Egypt J App Sci Res 6:13–21

    CAS  Google Scholar 

  8. Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S (2016) Bioremediation of polycyclic aromatic hydrocarbons (PAHs): a perspective. Open Biotech J 10:363–378. https://doi.org/10.2174/1874070701610010363

    Article  CAS  Google Scholar 

  9. Barakat AO, Mostafa A, Wade TL, Sweet ST, Sayed NB (2011) Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt. Mar Pollut Bull 62(9):1969–1978

    Article  CAS  PubMed  Google Scholar 

  10. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity and remediation approaches. Front Microbiol. https://doi.org/10.3389/fmicb.2020.562813

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adekunle AS, Oyekunle JAO, Ojo OS, Maxakoto NW, Olutona GO, Obisesan OR (2017) Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun State. Nigeria Toxicol Rep 4:39–48. https://doi.org/10.1016/jtoxrep.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Honda M, Suzuki N (2020) Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int J Env Res 17(4):1363. https://doi.org/10.3390/ijerph17041363

    Article  CAS  Google Scholar 

  13. ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. United States Department of health and Human Services, Public Health Service, ATSDR Division of Toxicology/Toxicological Information Branch, Atlanta, Georgia.

  14. ATSDR (2013) Polycyclic aromatic hydrocarbons (PAHs). Health effects. United States Department of health and Human Services. www.atsdr.cdc.gov/csem/polycyclic-aromatic-hydrocarbons/health_effects.html. Accessed 5 Jan 2023

  15. Duncan A, Oti J, Potakey M (2019) Impacts of human activities on the quality of River water: a case study of River Densu in Nsawam Adoagyiri of the Akwapim South District, Eastern Region of Ghana. Open Access Lib J 6:1–13. https://doi.org/10.4236/oalib.1105785

    Article  Google Scholar 

  16. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Society of Chemistry, Cambridge, United Kingdom, p. 466

  17. Bao LJ, Maruya KA, Snyder SA, Zeng EY (2012) China’s water pollution by persistent organic pollutants. Environ Pollut 163:100–108. https://doi.org/10.1016/j.envpol.2011.12.022

    Article  CAS  PubMed  Google Scholar 

  18. Agbozu I, Edjere O, Asibor G, Otolo S, Bassey U (2020) Source apportionment of polycyclic aromatic hydrocarbon (PAHs) concentration in water, sediment, and biota (fishes) from Ethiope River, Delta State. Southern Nigeria J Ecol Nat Environ 12(4):140–149. https://doi.org/10.5897/JENE2020.0832

    Article  Google Scholar 

  19. Adekunle AS, Oyekunle JAO, Ojo OS, Maxakato NW, Olutona GO, Obisesan OR (2017) Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife North Local Government Area of Osun state. Nigeria Toxicol Rep 4:39–48

    Article  CAS  PubMed  Google Scholar 

  20. Adeniji AO, Okoh OO, Okoh AI (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and their health risk assessment. Arch Environ Contam Toxicol 76:657–669. https://doi.org/10.1007/s00244-019-00617-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Da Silva TF, Azevedo D, Neto FRA (2007) Distribution of polycyclic aromatic hydrocarbons in surface sediments and waters from Guanabara Bay, Rio de Janeiro. Brazil J Braz Chem Soc 18(3):628–637. https://doi.org/10.1590/S0103-50532007000300021

    Article  Google Scholar 

  22. Jaward FM, Alegria HA, Galindo Reyes JG, Hoare A (2012) Levels of PAHs in the waters, sediments and shrimps of Estero de Urias, an Estuary in Mexico, and their toxicological effects. Sci World J 2012:9. https://doi.org/10.1100/2012/687034

    Article  CAS  Google Scholar 

  23. Asagbra MC, Adebayo AS, Anumudu CI, Ugwumba OA, Ugwumba AAA (2015) Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta. Nigeria Afr J Aquat Sci 40(2):1–7. https://doi.org/10.2989/16085914.2015.1035223

    Article  CAS  Google Scholar 

  24. Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM (2016) Determination and distribution of polycyclic aromatic hydrocarbons in Rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int J Environ Res Public Health 13(387):1–12. https://doi.org/10.3390/ijerph13040387

    Article  CAS  Google Scholar 

  25. Aigberua AO, Seiyaboh EI (2021) Distribution trends and source diagnosis of polycyclic aromatic hydrocarbons (PAHs) in sediments of Imiringi River. Curr World Environ. https://doi.org/10.12944/CWE.16.2.25

    Article  Google Scholar 

  26. Bleeker EAJ, Verbruggen EMJ (2009) Bioaccumulation of polycyclic aromatic hydrocarbons in aquatic organisms. National Institute for Public Health and the Environment, RIVM Report 601779002/2009.

  27. Alani R, Ken D, Kehinde O, Alo B (2012) Bioaccumulation of polycyclic aromatic hydrocarbons in fish and invertebrates of Lagos lagoon, Nigeria. J Emerg Trends Eng Appl Sci 3(7):287–296

    Google Scholar 

  28. Froehner S, Rizzi J, Vieira LM, Sanez J (2018) PAHs in water, sediment and biota in an area with Port activities. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-018-0538-6

    Article  PubMed  Google Scholar 

  29. Olayinka OO, Adewusi AA, Olujimi OO, Aladesida AA (2019) Polycyclic aromatic hydrocarbons in sediments and health risk of fish, crab and shrimps and Atlas Cove Nigeria. J Health Poll 9(24):191204. https://doi.org/10.5696/2156-9614-9.24.191204

    Article  Google Scholar 

  30. Yu Z, Lin Q, Gu Y, Du F, Wang X, Shi F, Ke C, Xiang M, Yu Y (2019) Bioaccumulation of polycyclic aromatic hydrocarbons in wild marine fish from the coastal waters of the northern South China sea: risk assessment for human health. Ecotoxicol Env Safety 180:742–748. https://doi.org/10.1016/j.ecoenv.2019.05.665

    Article  CAS  Google Scholar 

  31. Aluyi HSA, Ekhaise FO, Adelusi DM (2006) Effect of human activities and oil pollution on the microbiological and physicochemical quality of Udu River, Warri. Nigeria J Appl Sci 6(5):1214–1219. https://doi.org/10.7213/reb.v28i62.22716

    Article  CAS  Google Scholar 

  32. Okobiebi OO, Okobiebi BO (2021) Physicochemical and heavy metal assessment of the Udu River, Delta State, Nigeria. J Appl Sci Environ Manage. https://doi.org/10.4314/jasem.v25i4.28

    Article  Google Scholar 

  33. Iniaghe PO, Kpomah ED (2022) Polychlorinated biphenyls (PCBs) in water and sediments from the Udu River, Niger Delta, Nigeria: concentration, distribution and risk assessment. J Environ Expo Assess. https://doi.org/10.20517/jeea.2022.19

    Article  Google Scholar 

  34. Onajite I, Ovie JO (2022) The impacts of anthropogenic activities on the surface Sediment quality of Okpare creek in Niger Delta, Nigeria. Open Access Lib J 9:e7686. https://doi.org/10.4236/oalib.1107686

    Article  Google Scholar 

  35. Idibie CA, Idibie OC (2021) Physiochemical and microbiological analyses of crude oil impacted oil of Okpare-Olomu community of the Niger Delta. IOSR J Environ Sci Toxicol Food Tech 15(1):1–8. https://doi.org/10.9790/2402-1501020108

    Article  CAS  Google Scholar 

  36. Igben JL, Ihayere CA, Igun E (2022) Generation and management of solid wastes in Udu local government area of Delta State, Nigeria. Int J Env Waste Manage 29(1):1–13. https://doi.org/10.1504/IJEWM.2022.120620

    Article  CAS  Google Scholar 

  37. National Population Commission (NPC) (2006) Nigerian Population Census Report. National Population Commission, Abuja, 21–27.

  38. Udo KR (1975) Geographical Region of Nigeria. Heinemann Educational Books London, 1975; pp 212

  39. US EPA, United States Environmental Protection Agency (2007) Method 3510C, Separatory funnel liquid-liquid extraction, part of test methods for evaluating solid waste, physical/chemical methods.

  40. US EPA, United States Environmental Protection Agency (2007) Testing methods for evaluating solid waste, physical and chemical methods, method 3550C; ultra-sonication extraction. USEPA, Washington, DC. Retrieved from http:// www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/3550c.pdf. on 10 Feb 2020

  41. Lawal AT (2017) Polycyclic aromatic hydrocarbons: a review. Environ Sci. https://doi.org/10.1080/23311843.2017.1339841

    Article  Google Scholar 

  42. US EPA, United States Environmental Protection Agency (1989) Risk assessment guidance for superfund volume I, Human health evaluation manual (Part A): interim final. EPA/540/1-89/002;

  43. Eslami H, Esmaeili A, Razaeian M, Alari M, Hosseini AN (2022) Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking water resources of southeast Iran. Geosci Front. https://doi.org/10.1016/j.gsf.2021.101276

    Article  Google Scholar 

  44. ATSDR, Agency for Toxic Substances and Disease Registry (2018) Exposure dose guidance for dermal and ingestion exposure to surface water. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service

  45. US EPA, United State Environmental Protection Agency (2001) Risk assessment guidance for Superfund (RAGS), Vol. III-part a, process for conducting probabilistic risk assessment, EPA 540-R-02-002. Office of Emergency and Remedial Response, Washington, DC, 2001.

  46. US EPA, United States Environmental Protection Agency (2012) Mid Atlantic risk assessment, regional screening level (RSL). Summary Table. https://www.epa.gov/region9/surperfund/prg/

  47. US EPA, United States Environmental Protection Agency (2005) Guidelines for carcinogen risk assessment.

  48. Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366(1):112–123. https://doi.org/10.1016/j.scitotenv.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  49. Iwegbue CMA, Ehigbor MJ, Tesi GO, Eguavoen OI, Martincigh BS (2020) Occurrence, sources and exposure risk of polycyclic aromatic hydrocarbons (PAHs) in street dusts from the Nigerian megacity, Lagos. Polycy Aromat Comp. https://doi.org/10.1080/10406638.2020.1716027

    Article  Google Scholar 

  50. US EPA, United States Environmental Protection Agency (1993) Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089

  51. Ma W, Liu L, Qi H, Zhang Z, Song W, Shen J, Chen Z, Ren N, Grabuski J, Li Y (2013) Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin. China Environ Monit Assess 185(10):8399–8409. https://doi.org/10.1007/s10661-013-3182-7

    Article  CAS  PubMed  Google Scholar 

  52. Okoro D (2008) Source determination of polynuclear aromatic hydrocarbons in water and sediment of a creek in the Niger Delta region. Afr J Biotechnol 7:282–285

    Google Scholar 

  53. Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi River water, in New Orleans, Louisiana, USA. Chemosphere 66(6):1057–1069. https://doi.org/10.1016/j.chemosphere.2006.06.067

    Article  CAS  PubMed  Google Scholar 

  54. Tongo I, Etor EE (2018) Distribution, bioaccumulation and risk consideration of PAHs in water, sediment, fish and prawn from Bonny River, Rivers State, Nigeria. FUW Trends in Science and Technology 3(2B):760–769

    Google Scholar 

  55. Ibigbami OA, Asaolu SS, Popoola OK, Adefemi SO, Abodunde TS, Idowu K, Olatoye RO (2020) Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments from Egbe Dam in Southwest Nigeria. J Chromatogr Sep Tech. https://doi.org/10.35248/2157-7064.20.11.424

    Article  Google Scholar 

  56. Akinsanya B, Adebusoye SA, Alinson T, Ukwa UD (2018) Bioaccumulation of polycyclic aromatic hydrocarbons, histopathological alterations and parasito-fauna in bentho-pelagic host from Snake Island, Lagos. Nigeria J Basic Appl Zool 79(1):1–18

    Google Scholar 

  57. Kafilzadeh F (2015) Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad River. Iran Egypt J Aquat Res 41:227–231. https://doi.org/10.1016/j.ejar.2015.06.004

    Article  Google Scholar 

  58. Akan JC, Chellube ZM, Mohammed AI, Ogugbuaja VO, Abdulrahman FI (2018) Polycyclic aromatic hydrocarbon levels and risk assessment in water, sediment and fish samples from Alau Dam, Borno State. Nigeria J Environ Sci Tech 11(3):139–146. https://doi.org/10.3923/jest.2018.139.146

    Article  CAS  Google Scholar 

  59. Adekunle AS, Oyekunle JA, Oladele AS, Ojo OS, Maxakoto NW (2020) Evaluation of polycyclic aromatic hydrocarbons (PAHs) and health risk assessment of surface water and sediments if River Sasa Ife North Local Government, Nigeria. Chem Africa. https://doi.org/10.1007/s42250-020-00160-5

    Article  Google Scholar 

  60. Aderinola OJ, Mekuleyi GO, Whenu OO (2018) Total and polyaromatic hydrocarbons in water, sediment, fin and shellfishes from Badagry Creek and Ologe Lagoon, Lagos, Nigeria. J Appl Sci Environ Manage 22(5):675–680

    CAS  Google Scholar 

  61. CCME, Canadian Council of Ministers of the Environment (2010) Polycyclic aromatic hydrocarbons. Canadian soil quality guidelines for the protection of environmental and human health. Canadian Council of Ministers of the Environment, Winnipeg. http://ceqgrcq.ccme.ca/

  62. Baumard P, Budzinski H, Garrigues P (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar Pollut Bull 36(12):951–960. https://doi.org/10.1016/S0025-326X(98)00088-5

    Article  CAS  Google Scholar 

  63. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  PubMed  Google Scholar 

  64. Iwegbue CMA, Irerhievwie GO, Tesi GO, Olisah C, Nwajei GE, Martincingh BS (2021) Polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from selected Rivers in the western Niger Delta of Nigeria: spatial distribution, sources, and ecological and human health risk assessment. Mar Poll Bull 167:112351. https://doi.org/10.1016/j.marpolbul.2021.112351

    Article  CAS  Google Scholar 

  65. Howard IC, Okpara KE, Techato K (2021) Toxicity and risk assessment of polycyclic aromatic hydrocarbons in Riverbed sediments of an artisanal crude oil refining area in the Niger Delta. Nigeria Water 13(22):3295. https://doi.org/10.3390/w13223295

    Article  CAS  Google Scholar 

  66. Awe AA, Opeolu BO, Olatunji OS, Fatoki OS, Jackson VA, Snyman RG (2020) Occurrence and probabilistic risk assessment of PAHs in water and sediment samples of the Diep River, South Africa. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04306

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nekhavhambe TJ, van Ree T, Fatoki OS (2014) Determination and distribution of polycyclic aromatic hydrocarbons in Rivers, surface runoff and sediments in and around Thohoyandou, Limpopo Province. South Africa Water SA 40(3):415–424. https://doi.org/10.4314/wsa.v40i3.4

    Article  CAS  Google Scholar 

  68. Kalfilzadeh F, Shiva AH, Malekpour R (2011) Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River. Iran Middle East J Sci Res 10(1):1–7

    Google Scholar 

  69. Oyo-Ita OE, Offem JO, Ekpo BO, Adie PA (2012) Anthropogenic PAHs in mangrove sediments of the Calabar River, SE Niger Delta. Nigeria Appl Geochem 28:212–219. https://doi.org/10.1016/j.apgeochem.2012.09.011

    Article  CAS  Google Scholar 

  70. Gocht T, Moldenhauer KM, Puttmann W (2001) Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in flood plain sediments from the Rhine Rivers (Hessiches Ried, Germany). Appl Geochem 16:1707–1721. https://doi.org/10.1016/S0883-2927(01)00063-4

    Article  CAS  Google Scholar 

  71. Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11(1–2):121–127. https://doi.org/10.1016/0883-2927(95)00076-3

    Article  Google Scholar 

  72. Yang B, Xue N, Zhou L, Li F, Cong X, Han B, Li H, Yan Y, Liu B (2012) Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain. China Ecotoxicol Environ Saf 84:304–310. https://doi.org/10.1016/j.ecoenv.2012.07.027

    Article  CAS  PubMed  Google Scholar 

  73. Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D, Oyola P (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Tech 35:2288–2294. https://doi.org/10.1021/es001540z

    Article  CAS  Google Scholar 

  74. Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Tech 37:1873–1881. https://doi.org/10.1021/es0206184

    Article  CAS  Google Scholar 

  75. Khalili NR, Schef PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 9(4):533–542. https://doi.org/10.1016/1352-2310(94)00275-P

    Article  Google Scholar 

  76. Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan Atmos. Environ 33(30):5071–5078. https://doi.org/10.1016/S1352-2310(99)00233-2

    Article  CAS  Google Scholar 

  77. ILO, International Labour Organization (2021) International Chemical Safety Card database – ICSC: 0431 – dibenzo(a,h)anhanthacene. Prepared by an international group of experts on behalf of ILO and WHO, with the financial assistance of the European Commission. © ILO and WHO 2021. Retrieved from https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id=0431&p_version=2. Accessed 5 Jan 2023

  78. NJDOH, New Jersey Department of Health (2010) Right to know—Hazardous Substance Fact Sheet: dibenz(a,h)anthacene. Retrieved from www.nj.gov/health/eoh/rtkweb/documents/fs/0622.pdf. Accessed 5 Jan 2023

  79. Okona-Mensah KB, Battershill J, Boobis A, Fielder R (2005) An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food Chem Toxicol 43(7):1103–1116. https://doi.org/10.1016/j.fct.2005.03.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Messrs Eze W. Odali and Jude C. Ossai, and the Management of Apex Analytics, Port Harcourt, Nigeria, for assistance rendered in the course of this work.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paschal Okiroro Iniaghe.

Ethics declarations

Conflict of interest

The authors have no relevant competing or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniaghe, P.O., Kpomah, E.D. A Comparative Analysis on the Concentration and Potential Risk of Polycyclic Aromatic Hydrocarbons in Surface Water, Sediment and Soil from a Non-crude Oil and a Crude Oil Explosion Site in the Niger Delta, Nigeria. Chemistry Africa 6, 1633–1653 (2023). https://doi.org/10.1007/s42250-023-00596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00596-5

Keywords

Navigation