Skip to main content
Log in

Adsorption of Blue Cationic Thiazine Dye from Synthetic Wastewater by Natural Iraqi Bentonite Using Response Surface Methodology: Isotherm, Kinetic, and Thermodynamic Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Dyes are poisonous and carcinogenic substances that are harmful to human health. Therefore, this study demonstrates using bentonite as a natural absorbent to remove methylene blue (MB), blue cationic thiazine dye, by studying the effects of different adsorbed doses, contact times, initial concentrations, pH, and temperatures on the removal efficiency. According to the kinetics and thermodynamics results, the process was represented by a pseudo-2nd-order equation and found exothermic and spontaneous. The experimental equilibrium adsorption capacity was 56.90 mg/g while the maximum one was 93.55 mg/g by the Langmuir isotherm. The optimum conditions are 40.7 mg/L, 0.55 g, pH 8, and 30 min with the removal of 99.5% while ANOVA was utilized to find correlations describing the MB removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors state that no data was used for the research in this article.

References

  1. Lou Z, Zhou Z, Zhang W, Zhang X, Hu X, Liu P, Zhang H (2015) Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: synthesis, characterization, mechanism, kinetics and regeneration. J Taiwan Inst Chem Eng 49:199–205. https://doi.org/10.1016/j.jtice.2014.11.007

    Article  CAS  Google Scholar 

  2. Hamed MM, Ahmed IM, Metwally SS (2014) Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent. J Ind Eng Chem 20(4):2370–2377. https://doi.org/10.1016/j.jiec.2013.10.015

    Article  CAS  Google Scholar 

  3. Ait Hmeid H, Baghour AMM, Moumen A, Skalli A, Daoudi L, Aalaoul M, Azizi G, Anjjar A (2021) Adsorption of a basic dye, Methylene Blue, in aqueous solution on bentonite. Moroccan J Chem 9:416–433. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i3.23303

    Article  Google Scholar 

  4. Zhang Y, Zhang S, Gao J, Chung T-S (2016) Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J Membr Sci 515:230–237. https://doi.org/10.1016/j.memsci.2016.05.035

    Article  CAS  Google Scholar 

  5. Al-Sheikh F (2018) Reducing environmental impacts of the petroleum refining operations: studies related to water treatment and carbon dioxide emissions management. UWSpace. http://hdl.handle.net/10012/14281

  6. Al-Sheikh F, Moralejo C, Pritzker M, Anderson WA, Elkamel A (2019) Ammonia removal from real wastewater using a LEWATIT S 108 H resin: a batch process and fixed-bed column. Sep Sci Technol. https://doi.org/10.1080/01496395.2019.1655457

    Article  Google Scholar 

  7. Al-Sheikh F, Moralejo C, Pritzker M, Anderson WA, Elkamel A (2020) Batch adsorption study of ammonia removal from synthetic/real wastewater using ion exchange resins and zeolites. Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1718706

    Article  Google Scholar 

  8. Shakor ZM, Mahdi HH, Al-Sheikh F, Alwan GM, Al-Jadir T (2021) Ni, Cu, and Zn metal ions removal from synthetic wastewater using a watermelon rind (Catullus landaus). Mater Today Proc 42:2502–2509. https://doi.org/10.1016/j.matpr.2020.12.570

    Article  CAS  Google Scholar 

  9. Alwan GM, Mehdi FA, Murtadha MS (2012) pH control of a wastewater treatment unit using Labview and genetic algorithm. In: The sixth Jordan international chemical engineering conference, pp. 1‒10

  10. Al-Jadir T, Alardhi SM, Al-Sheikh F, Jaber AA, Kadhim WA, Rahim MHA (2022) Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. Chem Eng Commun. https://doi.org/10.1080/00986445.2022.2129622

    Article  Google Scholar 

  11. Sardar M, Manna M, Maharana M, Sen S (2021) Remediation of dyes from industrial wastewater using low-cost adsorbents. In: Sps S (ed) Green adsorbents to remove metals, dyes and boron from polluted water. Springer, Cham, pp 377–403. https://doi.org/10.1007/978-3-030-47400-3_15

    Chapter  Google Scholar 

  12. Lakshmi, M., Vivek, D., Vijayalakshmi, S., Ranjitha, J., & Saravanan, A. M. (2021, September). A review on removal of industrial dyes using low cost natural adsorbents. In AIP Conference Proceedings (Vol. 2396, No. 1, p. 030008). AIP Publishing LLC.

  13. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic, equilibrium and thermodynamic study. Molecules. https://doi.org/10.3390/molecules26082241

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lahreche S, Moulefera I, El Kebir A, Sabantina L, Kaid MH, Benyoucef A (2022) Application of activated carbon adsorbents prepared from prickly pear fruit seeds and a conductive polymer matrix to remove Congo red from aqueous solutions. Fibers 10(1):7. https://doi.org/10.3390/fib10010007

    Article  CAS  Google Scholar 

  15. Gao S, Wang D, Huang Z, Su C, Chen M, Lin X (2022) Recyclable NiO/sepiolite as adsorbent to remove organic dye and its regeneration. Sci Rep 12(1):2895. https://doi.org/10.1038/s41598-022-06849-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amin G, Đorđević D, Konstantinović S, Jordanov I (2017) The removal of the textile basic dye from the water solution by using natural zeolite. Adv Technol 6(2):67–71. https://doi.org/10.5937/savteh1702067A

    Article  Google Scholar 

  17. Mkilima T, Meiramkulova K, Nurbala U, Zandybay A, Khusainov M, Nurmukhanbetova N et al (2021) Investigating the influence of column depth on the treatment of textile wastewater using natural zeolite. Molecules 26(22):7030. https://doi.org/10.3390/molecules26227030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hidayat E, Harada H, Mitoma Y, Yonemura S, Halem AHI (2022) Rapid removal of acid red 88 by zeolite/chitosan hydrogel in aqueous solution. Polymers 14(5):893. https://doi.org/10.3390/polym14050893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamranifar M, Naghizadeh A (2017) Montmorillonite nanoparticles in removal of textile dyes from aqueous solutions: study of kinetics and thermodynamics. Iran J Chem Chem Eng 36:127–137

    Google Scholar 

  20. Puri C, Sumana G (2018) Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl Clay Sci 166:102–112. https://doi.org/10.1016/j.clay.2018.09.012

    Article  CAS  Google Scholar 

  21. López-Rodríguez D, Micó-Vicent B, Jordán-Núñez J, Bonet-Aracil M, Bou-Belda E (2021) Uses of nanoclays and adsorbents for dye recovery: a textile industry review. Appl Sci 11(23):11422. https://doi.org/10.3390/app112311422

    Article  CAS  Google Scholar 

  22. Pajak M (2021) Adsorption capacity of smectite clay and its thermal and chemical modification for two anionic dyes: comparative study. Water Air Soil Pollut 232(2):1–18. https://doi.org/10.1007/s11270-021-05032-3

    Article  CAS  Google Scholar 

  23. Daniele BK, Eric N, Etienne Y, Canuala TTL, Baptiste BMJ (2021) Kinetic modeling of three textile dyes adsorption from aqueous solution onto a Cameroonian smectite. J Energy Environ Chem Eng 6(3):71. https://doi.org/10.11648/j.jeece.20210603.14

    Article  Google Scholar 

  24. Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003

    Article  CAS  Google Scholar 

  25. Zdravković AS, Stanković NJ, Ristić NN, Petković GM (2019) Application of activated bentonite for the removal of direct and reactive dye from aqueous solutions. Chem Ind Chem Eng Q 25(4):341–351. https://doi.org/10.2298/ciceq171025012z

    Article  CAS  Google Scholar 

  26. Hamad HN, Idrus S (2022) Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers 14(4):783. https://doi.org/10.3390/polym14040783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Z, Fu J, Wang M, Wang X, Zhang J, Xu Q (2014) Adsorption of cationic dye (methylene blue) from aqueous solution using poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanospheres. Appl Surf Sci 289:495–501. https://doi.org/10.1016/j.apsusc.2013.11.022

    Article  CAS  Google Scholar 

  28. Huang Z, Li Y, Chen W, Shi J, Zhang N, Wang X et al (2017) Modified bentonite adsorption of organic pollutants of dye wastewater. Mater Chem Phys 202:266–276. https://doi.org/10.1016/j.matchemphys.2017.09.028

    Article  CAS  Google Scholar 

  29. Fernandes JV, Rodrigues AM, Menezes RR, Neves GDA (2020) Adsorption of anionic dye on the acid-functionalized bentonite. Materials 13(16):3600. https://doi.org/10.3390/ma13163600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Saray AJ, Al-Mousawi IMH, Al-Noor TH (2022) Chem Methodol 6:331–338. https://doi.org/10.22034/CHEMM.2022.328714.1439

    Article  CAS  Google Scholar 

  31. Alamery HR, Ahmed SA (2021) Purification and activation of the Iraqi bentonite for edible oil Production. IOP Conf Ser Mater Sci Eng 1090(1):012039. https://doi.org/10.1088/1757-899X/1090/1/012039

    Article  CAS  Google Scholar 

  32. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  33. Freundlich HMF (1906) Uber Die Adsorption in Losungen. Z Phys Chem (Leipzig) 57(1):385–470

    CAS  Google Scholar 

  34. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12(1):327

    Google Scholar 

  35. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  36. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  37. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20(2):228–238. https://doi.org/10.1002/aic.690200204

    Article  CAS  Google Scholar 

  38. Daham GR, AbdulRazak AA, Hamadi AS, Mohammed AA (2017) Re-refining of used lubricant oil by solvent extraction using central composite design method. Korean J Chem Eng 34(9):2435–2444. https://doi.org/10.1007/s11814-017-0139-5

    Article  CAS  Google Scholar 

  39. Shakor ZM, AbdulRazak AA, Shuhaib AA (2022) Optimization of process variables for hydrogenation of cinnamaldehyde to cinnamyl alcohol over a Pt/SiO2 catalyst using response surface methodology. Chem Eng Commun 209(6):827–843. https://doi.org/10.1080/00986445.2021.1922394

    Article  CAS  Google Scholar 

  40. AbdulRazak AA, Shakor ZM, Rohani S (2018) Optimizing Biebrich Scarlet removal from water by magnetic zeolite 13X using response surface method. J Environ Chem Eng 6(5):6175–6183. https://doi.org/10.1016/j.jece.2018.09.043

    Article  CAS  Google Scholar 

  41. Mao H, Li B, Li X, Yue L, Liu Z, Ma W (2010) Novel one-step synthesis route to ordered mesoporous silica-pillared clay using cationic− anionic mixed-gallery templates. Ind Eng Chem Res 49(2):583–591. https://doi.org/10.1021/ie9011563

    Article  CAS  Google Scholar 

  42. Tabak A, Yilmaz N, Eren E, Caglar B, Afsin B, Sarihan A (2011) Structural analysis of naproxen-intercalated bentonite (Unye). Chem Eng J 174(1):281–288. https://doi.org/10.1016/j.cej.2011.09.027

    Article  CAS  Google Scholar 

  43. Ouhaddouch H, Cheikh A, Idrissi MOB, Draoui M, Bouatia M (2019) FT-IR spectroscopy applied for identification of a mineral drug substance in drug products: application to bentonite. J Spectroscopy. https://doi.org/10.1155/2019/2960845

    Article  Google Scholar 

  44. Eisazadeh A, Kassim KA, Nur H (2012) Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl Clay Sci 67:5–10. https://doi.org/10.1016/j.clay.2012.05.006

    Article  CAS  Google Scholar 

  45. Al-Dahri T, Abdul Razak AA, Khalaf IH, Rohani S (2018) Response surface modeling of the removal of methyl orange dye from its aqueous solution using two types of zeolite synthesized from coal fly ash. Mater Express 8(3):234–244. https://doi.org/10.1166/mex.2018.1433

    Article  CAS  Google Scholar 

  46. Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36(2–3):189–196. https://doi.org/10.1016/S0273-1223(97)00387-9

    Article  CAS  Google Scholar 

  47. Tahir SS, Rauf N (2006) Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63(11):1842–1848. https://doi.org/10.1016/j.chemosphere.2005.10.033

    Article  CAS  PubMed  Google Scholar 

  48. Al-dahri T, AbdulRazak AA, Rohani S (2020) Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes. Int J Coal Preparation Utiliz. https://doi.org/10.1080/19392699.2020.1792456

    Article  Google Scholar 

  49. Khalaf IH, Al-Sudani FT, AbdulRazak AA, Aldahri T, Rohani S (2021) Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach. Water Sci Technol 83(6):1369–1383. https://doi.org/10.2166/wst.2021.078

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed FS, AbdulRazak AA, Alsaffar MA (2022) Modelling and optimization of methylene blue adsorption from wastewater utilizing magnetic marble dust adsorbent: a response surface methodology approach. Mater Today Proc 60:1676–1688. https://doi.org/10.1016/j.matpr.2021.12.224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Chemical Engineering, University of Technology-Iraq, Baghdad, Iraq for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq Al-Sheikh.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sheikh, F., Jasim, F.T., Al-Humairi, S.T. et al. Adsorption of Blue Cationic Thiazine Dye from Synthetic Wastewater by Natural Iraqi Bentonite Using Response Surface Methodology: Isotherm, Kinetic, and Thermodynamic Studies. Chemistry Africa 6, 1437–1447 (2023). https://doi.org/10.1007/s42250-023-00591-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00591-w

Keywords

Navigation