Skip to main content
Log in

Activated Charcoal/Alginate Nanocomposite Beads for Efficient Adsorption of the Cationic Dye Methylene Blue: Kinetics and Equilibrium

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Novel adsorbent composite beads based on sodium alginate/Activated charcoal (SA/AC) were prepared. The beads were characterized using a variety of instruments, including a Fourier transform infrared spectrometer (FTIR), and scanning electron microscope (SEM). The adsorption capacity of the beads was investigated using batch adsorption studies. This study investigated the influence of several parameters, including the initial pH of the MB solution, the contact time, the initial concentration of the MB, and the temperature of the MB solution. Methylene blue (MB) was effectively adsorbing on sodium alginate/activated charcoal beads after 60 min. The adsorption process was fitted with a pseudo-second-order kinetic model, yielding maximum adsorption capacities of 555 mg/g in mildly alkaline solutions SA/Ac beads were development to be capable of regenerating the MB up to four times without compromising their adsorption efficiency. The SA/AC beads were found to be excellent adsorbents for organic contaminants in wastewater in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Data Availability

The research data associated with a paper is available.

References

  1. Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2019) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromol 20:573–597

    Article  CAS  Google Scholar 

  2. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng 6:4676–4697

    Article  CAS  Google Scholar 

  3. Hasanpour M, Hatami M (2020) Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study. J Mol Liq 309:2

    Article  Google Scholar 

  4. Salama A, Abou-Zeid RE, Cruz-Maya I, Guarino V (2020) Soy protein hydrolysate grafted cellulose nanofibrils with bioactive signals for bone repair and regeneration. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115472

    Article  PubMed  Google Scholar 

  5. Salama A, Abouzeid R, Leong WS et al (2021) Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials 11:2

    Article  Google Scholar 

  6. Salama A, Abou-Zeid RE (2021) Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. Int J Biol Macromol 188:404–410. https://doi.org/10.1016/j.ijbiomac.2021.08.021

    Article  CAS  PubMed  Google Scholar 

  7. Abou-Zeid RE, Awwad NS, Nabil S et al (2019) Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol 141:1280–1286. https://doi.org/10.1016/j.ijbiomac.2019.09.076

    Article  CAS  PubMed  Google Scholar 

  8. Pires JRA, Souza VGL, Fernando AL (2019) Valorization of energy crops as a source for nanocellulose production—Current knowledge and future prospects. Ind Crops Prod 140:111642. https://doi.org/10.1016/j.indcrop.2019.111642

    Article  CAS  Google Scholar 

  9. El NA, Abdelwahab O, El-Sikaily A, Khaled A (2009) Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. J Hazard Mater 161:102–110. https://doi.org/10.1016/j.jhazmat.2008.03.060

    Article  CAS  Google Scholar 

  10. Gago D, Chagas R, Ferreira LM et al (2020) A novel cellulose-based polymer for efficient removal of methylene blue. Membranes (Basel). https://doi.org/10.3390/membranes10010013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sirajudheen P, Nikitha MR, Karthikeyan P, Meenakshi S (2020) Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: Adsorption investigation of parametric studies and their mechanisms. Surfaces Interfaces. https://doi.org/10.1016/j.surfin.2020.100648

    Article  Google Scholar 

  12. Iqbal J, Shah NS, Sayed M et al (2020) Deep eutectic solvent-mediated synthesis of ceria nanoparticles with the enhanced yield for photocatalytic degradation of flumequine under UV-C. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101012

    Article  PubMed Central  Google Scholar 

  13. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ et al (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287

    Article  CAS  PubMed  Google Scholar 

  14. Iqbal J, Shah NS, Sayed M et al (2020) Synthesis of nitrogen-doped Ceria nanoparticles in deep eutectic solvent for the degradation of sulfamethaxazole under solar irradiation and additional antibacterial activities. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124869

    Article  Google Scholar 

  15. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  16. Li L, Iqbal J, Zhu Y et al (2020) Chitosan/Al2O3-HA nanocomposite beads for efficient removal of estradiol and chrysoidin from aqueous solution. Int J Biol Macromol 145:686–693. https://doi.org/10.1016/j.ijbiomac.2019.12.223

    Article  CAS  PubMed  Google Scholar 

  17. Nasrullah A, Bhat AH, Naeem A et al (2018) High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol 107:1792–1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045

    Article  CAS  PubMed  Google Scholar 

  18. Naseer A, Jamshaid A, Hamid A et al (2019) Lignin and lignin based materials for the removal of heavy metals from waste water—An overview. Zeitschrift fur Phys Chemie 233:315–345

    Article  CAS  Google Scholar 

  19. Saber-Samandari S, Saber-Samandari S, Nezafati N, Yahya K (2014) Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J Environ Manage 146:481–490. https://doi.org/10.1016/j.jenvman.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  20. Rajabi M, Mahanpoor K, Moradi O (2017) Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: Critical review. RSC Adv 7:47083–47090. https://doi.org/10.1039/c7ra09377b

    Article  CAS  Google Scholar 

  21. Gul Zaman H, Baloo L, Pendyala R et al (2021) Produced water treatment with conventional adsorbents and MOF as an alternative: A review. Materials (Basel) 14:1–29. https://doi.org/10.3390/ma14247607

    Article  CAS  Google Scholar 

  22. Abouzeid RE, Owda ME, Dacrory S (2022) Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium. J Appl Polym Sci 139:e52377

    Article  CAS  Google Scholar 

  23. Bagheri E, Rahnama H, Hassannia MA et al (2021) Oriented polylactic acid/graphene oxide nanocomposites with high mechanical and thermal properties. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057211038625

    Article  Google Scholar 

  24. Dardeer HM, Mahgoub MY, Abouzeid RE et al (2022) Novel pseudopolyrotaxane composite based on biopolymers: Synthesis, characterization and application in water treatment. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2021.100639

    Article  Google Scholar 

  25. Hassan E, Hassan M, Abou-zeid R et al (2017) Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polymers (Basel). https://doi.org/10.3390/polym9090388

    Article  PubMed  PubMed Central  Google Scholar 

  26. Naseer A, Hamid A, Ghauri M et al (2020) Lignin/alginate/hydroxyapatite composite beads for the efficient removal of copper and nickel ions from aqueous solutions. Desalin Water Treat 184:199–213. https://doi.org/10.5004/dwt.2020.25356

    Article  CAS  Google Scholar 

  27. Rajkumar M, Meenakshisundaram N, Rajendran V (2011) Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Mater Charact 62:469–479. https://doi.org/10.1016/j.matchar.2011.02.008

    Article  CAS  Google Scholar 

  28. Wahba MI, Hassan ME, Ali KA (2021) Chitosan-glutaraldehyde activated carrageenan-alginate beads for β-D-galactosidase covalent immobilisation. Biocatal Biotransformation 39:138–151. https://doi.org/10.1080/10242422.2020.1832476

    Article  CAS  Google Scholar 

  29. Ali AO, Abdalla MS, Shahein YE et al (2021) Grafted carrageenan: alginate gel beads for catalase enzyme covalent immobilization. 3 Biotech. https://doi.org/10.1007/s13205-021-02875-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Assem Y, Abou-Zeid RE, Ali KA, Kamel S (2019) Synthesis of acrylate-modified cellulose via raft polymerization and its application as efficient metal ions adsorbent. Egypt J Chem 62:85–96. https://doi.org/10.21608/ejchem.2018.4005.1351

    Article  Google Scholar 

  31. Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214. https://doi.org/10.1016/j.ijbiomac.2018.07.127

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Wan Y, Xie Y et al (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216. https://doi.org/10.1016/j.cej.2012.01.136

    Article  CAS  Google Scholar 

  33. Rocher V, Bee A, Siaugue JM, Cabuil V (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater 178:434–439. https://doi.org/10.1016/j.jhazmat.2010.01.100

    Article  CAS  PubMed  Google Scholar 

  34. Hachi M, Chergui A, Selatnia A, Cabana H (2016) Valorization of the spent biomass of pleurotus mutilus immobilized as calcium alginate biobeads for methylene blue biosorption. Environ Process 3:413–430. https://doi.org/10.1007/s40710-016-0157-z

    Article  Google Scholar 

  35. Li Y, Du Q, Liu T et al (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95:501–507. https://doi.org/10.1016/j.carbpol.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  36. Ma T, Chang PR, Zheng P et al (2014) Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem Eng J 240:595–600. https://doi.org/10.1016/j.cej.2013.10.077

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In this work, the authors would like to express their gratitude to the National Research Centre for technical assistance.

Funding

No funding is available.

Author information

Authors and Affiliations

Authors

Contributions

The authors of this article and their contribution to this work are equals contributions.

Corresponding author

Correspondence to Ragab E Abouzeid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Ramzi Khiari is Guest Editor of the Special Issue "Lignocellulose at multiscale: preparation characterization".

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouzeid, R., Khiari, R. & Ali, K.A. Activated Charcoal/Alginate Nanocomposite Beads for Efficient Adsorption of the Cationic Dye Methylene Blue: Kinetics and Equilibrium. Chemistry Africa 6, 2369–2379 (2023). https://doi.org/10.1007/s42250-022-00560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00560-9

Keywords

Navigation