Skip to main content
Log in

Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The Congo red (CR) desorption, from two dye-loaded agricultural solid wastes such as Argan nutshell (ArS) and Almond shell (AmS), was evaluated in this study. The adsorbents were characterized by FTIR and SEM analyzes. Process optimization was conducted using Response Surface Methodology (RSM) feature central composite design (CCD). At optimum conditions (CR-adsorbent dose = 16 g L− 1, pH = 4, contact time = 50 min, NaOH concentration = 0.1 M, temperature = 23 ± 1 °C), the CR adsorption values were found to be 98.15% and 98.43%, respectively, for CR-ArS and CR-AmS. Further, a good agreement was found between the experimental results and those predicted by the pseudo-second-order kinetic model. CR desorption efficiencies of 98.45% for CR-ArS, and 98.86% for CR-AmS, were obtained from the CCD-RSM study. Such efficiency values of the CR desorption were reached under optimized conditions of CR-adsorbent dose, contact time, and NaOH concentration: 13 g L–1, 35 min, and 0.07 M for CR-ArS and 12.4 g L–1, 32 min, and 0.06 M for CR-AmS. Furthermore, the ArS and AmS adsorbents showed good regeneration and reusability. The overall data indicate that agricultural solid wastes such as Argan nutshell and Almond shell are suitable adsorbents for wastewater treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chowdhury MF, Khandaker S, Sarker F et al (2020) Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: a review. J Mol Liq 318:114061. https://doi.org/10.1016/J.MOLLIQ.2020.114061

    Article  CAS  Google Scholar 

  2. Yeamin M, Islam MMB, Chowdhury AN, Awual MR (2021) Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. J Clean Prod 291:125920. https://doi.org/10.1016/J.JCLEPRO.2021.125920

    Article  CAS  Google Scholar 

  3. Bounaas M, Bouguettoucha A, Chebli D et al (2021) Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arab J Sci Eng 46:325–341. https://doi.org/10.1007/s13369-020-04739-5

    Article  CAS  Google Scholar 

  4. Benjelloun M, Miyah Y, Bouslamti R et al (2022) The fast-efficient adsorption process of the toxic dye onto shells powders of walnut and peanut: experiments, equilibrium, thermodynamic, and regeneration studies. Chem Africa 2022:1–19. https://doi.org/10.1007/S42250-022-00328-1

    Article  Google Scholar 

  5. Dbik A, Bentahar S, El Khomri M et al (2020) Adsorption of Congo red dye from aqueous solutions using tunics of the corm of the saffron. In: Materials today: proceedings

  6. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. https://doi.org/10.1016/J.HELIYON.2020.E03271

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumar A, Dixit U, Singh K et al (2021) Structure and properties of dyes and pigments. https://doi.org/10.5772/INTECHOPEN.97104

  8. Rane A, Joshi SJ (2021) Biodecolorization and biodegradation of dyes: a review. Open Biotechnol J 15:97–108. https://doi.org/10.2174/1874070702115010097

    Article  Google Scholar 

  9. El Messaoudi N, El Khomri M, Chlif N et al (2021) Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells. Groundw Sustain Dev 12:100552. https://doi.org/10.1016/j.gsd.2021.100552

    Article  Google Scholar 

  10. Singh S, Perween S, Ranjan A (2021) Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng 9:105149. https://doi.org/10.1016/J.JECE.2021.105149

    Article  CAS  Google Scholar 

  11. El Messaoudi N, El Khomri M, Dbik A et al (2016) Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: experimental and mathematical modeling. J Environ Chem Eng 4:3848–3855. https://doi.org/10.1016/j.jece.2016.08.027

    Article  CAS  Google Scholar 

  12. Islam A, Teo SH, Taufiq-Yap YH et al (2021) Step towards the sustainable toxic dyes removal and recycling from aqueous solution-a comprehensive review. Resour Conserv Recycl 175:105849. https://doi.org/10.1016/J.RESCONREC.2021.105849

    Article  Google Scholar 

  13. Ali S, Jan FA, Ullah R et al (2022) Kinetic and thermodynamic study of the photo catalytic degradation of methylene blue (MB) in aqueous solution using cadmium sulphide (CdS) nanocatalysts. Chem Afr 2022:1–12. https://doi.org/10.1007/S42250-022-00327-2

    Article  Google Scholar 

  14. El Messaoudi N, El Khomri M, Chegini ZG et al (2022) Desorption of crystal violet from alkali-treated agricultural material waste: an experimental study, kinetic, equilibrium and thermodynamic modeling. Pigment Resin Technol 51:309–319. https://doi.org/10.1108/PRT-02-2021-0019/FULL/XML

    Article  Google Scholar 

  15. Ledakowicz S, Pázdzior K (2021) Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules. https://doi.org/10.3390/MOLECULES26040870

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin L, Zhu W, Zhang C et al (2021) Combination of wet fixation and drying treatments to improve dye fixation onto spray-dyed cotton fabric. Sci Rep 111(11):1–15. https://doi.org/10.1038/s41598-021-94885-z

    Article  CAS  Google Scholar 

  17. Hasan MM, Shenashen MA, Hasan MN et al (2021) Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. J Mol Liq 323:114587. https://doi.org/10.1016/J.MOLLIQ.2020.114587

    Article  CAS  Google Scholar 

  18. El Messaoudi N, El Khomri M, Chegini ZG et al (2021) Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol Environ Eng 71(7):1–15. https://doi.org/10.1007/S41204-021-00173-6

    Article  Google Scholar 

  19. El Mouden A, El Guerraf A, El Messaoudi N et al (2022) Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem Afr 2022:1–15. https://doi.org/10.1007/S42250-022-00350-3

    Article  Google Scholar 

  20. Suzaimi ND, Goh PS, Malek NANN et al (2020) Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption. Arab J Chem 13:6682–6695. https://doi.org/10.1016/J.ARABJC.2020.06.023

    Article  CAS  Google Scholar 

  21. Redondo-Gómez C, Quesada MR, Astúa SV et al (2020) Biorefinery of biomass of agro-industrial banana waste to obtain high-value biopolymers. Molecules. https://doi.org/10.3390/MOLECULES25173829

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karić N, Maia AS, Teodorović A et al (2022) Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem Eng J Adv 9:100239. https://doi.org/10.1016/J.CEJA.2021.100239

    Article  Google Scholar 

  23. El Messaoudi N, El Khomri M, Dbik A et al (2017) Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus). J Dispers Sci Technol 38:1168–1174. https://doi.org/10.1080/01932691.2016.1228070

    Article  CAS  Google Scholar 

  24. Kwikima MM, Mateso S, Chebude Y (2021) Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review. Sci Afr 13:e00934. https://doi.org/10.1016/J.SCIAF.2021.E00934

    Article  CAS  Google Scholar 

  25. El Khomri M, El Messaoudi N, Dbik A et al (2020) Efficient adsorbent derived from Argania Spinosa for the adsorption of cationic dye: Kinetics, mechanism, isotherm and thermodynamic study. Surf Interfaces 20:100601. https://doi.org/10.1016/j.surfin.2020.100601

    Article  CAS  Google Scholar 

  26. El Khomri M, El Messaoudi N, Dbik A et al (2021) Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution. Chem Eng Commun. https://doi.org/10.1080/00986445.2021.1963960

    Article  Google Scholar 

  27. El Khomri M, El Messaoudi N, Dbik A et al (2021) Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. https://doi.org/10.1108/PRT-04-2021-0045/FULL/XML

    Article  Google Scholar 

  28. Khomri M, El Messaoudi MN, El Dbik A et al (2022) Organic Dyes adsorption on the almond shell (prunus dulcis) as agricultural solid waste from aqueous solution in single and binary mixture systems. Biointerface Res Appl Chem 12:2022–2040.

    Google Scholar 

  29. Qamouche K, Chetaine A, El Yahyaoui A et al (2021) Uranium and other heavy metal sorption from Moroccan phosphoric acid with argan nutshell sawdust. Min Eng 171:107085. https://doi.org/10.1016/J.MINENG.2021.107085

    Article  CAS  Google Scholar 

  30. Melhaoui R, Miyah Y, Kodad S et al (2021) On the suitability of almond shells for the manufacture of a natural low-cost bioadsorbent to remove brilliant green: kinetics and equilibrium isotherms study. Sci World J. https://doi.org/10.1155/2021/6659902

    Article  Google Scholar 

  31. El Messaoudi N, El Khomri M, Fernine Y et al (2022) Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment. Groundw Sustain Dev 16:100728. https://doi.org/10.1016/J.GSD.2022.100728

    Article  Google Scholar 

  32. Jawad AH, Malek NNA, Abdulhameed AS, Razuan R (2020) Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box–Behnken design. J Polym Environ 28:1068–1082. https://doi.org/10.1007/s10924-020-01669-z

    Article  CAS  Google Scholar 

  33. El Messaoudi N, El Khomri M, Ablouh EH et al (2022) Biosynthesis of SiO2 nanoparticles using extract of Nerium oleander leaves for the removal of tetracycline antibiotic. Chemosphere 287:132453. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132453

    Article  PubMed  Google Scholar 

  34. Salomón YLdO, Georgin J, Franco DSP et al (2020) Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations. Adv Powder Technol 31:2843–2852. https://doi.org/10.1016/j.apt.2020.05.004

    Article  CAS  Google Scholar 

  35. Shakoor S, Nasar A (2019) Utilization of Cucumis sativus peel as an eco-friendly biosorbent for the confiscation of crystal violet dye from artificially contaminated wastewater. Anal Chem Lett 9:1–19. https://doi.org/10.1080/22297928.2019.1588162

    Article  CAS  Google Scholar 

  36. El Messaoudi N, Dbik A, El Khomri M et al (2017) Date stones of Phoenix dactylifera and jujube shells of Ziziphus lotus as potential biosorbents for anionic dye removal. Int J Phytoremediation 19:1047–1052. https://doi.org/10.1080/15226514.2017.1319331

    Article  CAS  PubMed  Google Scholar 

  37. Siengchum T, Isenberg M, Chuang SSC (2013) Fast pyrolysis of coconut biomass-an FTIR study. Fuel 105:559–565. https://doi.org/10.1016/j.fuel.2012.09.039

    Article  CAS  Google Scholar 

  38. Loulidi I, Boukhlifi F, Ouchabi M et al (2020) Adsorption of crystal violet onto an agricultural waste residue: kinetics, isotherm, thermodynamics, and mechanism of adsorption. Sci World J. https://doi.org/10.1155/2020/5873521

    Article  Google Scholar 

  39. Jawad AH, Abdulhameed AS (2020) Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy Ecol Environ 5:456–469. https://doi.org/10.1007/s40974-020-00177-z

    Article  Google Scholar 

  40. Surip SN, Abdulhameed AS, Garba ZN et al (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surf Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641

    Article  CAS  Google Scholar 

  41. El Messaoudi N, El Khomri M, Bentahar S et al (2016) Evaluation of performance of chemically treated date stones: application for the removal of cationic dyes from aqueous solutions. J Taiwan Inst Chem Eng 67:244–253. https://doi.org/10.1016/j.jtice.2016.07.024

    Article  CAS  Google Scholar 

  42. Feng NC, Guo XY (2012) Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Met Soc China (English Ed) 22:1224–1231. https://doi.org/10.1016/S1003-6326(11)61309-5

    Article  CAS  Google Scholar 

  43. Singh J, Ali A, Jaswal VS, Prakash V (2015) Desalination of Cd2 + and Pb2 + from paint industrial wastewater by Aspergillus niger decomposed Citrus limetta peel powder. Int J Environ Sci Technol 12:2523–2532. https://doi.org/10.1007/s13762-014-0620-1

    Article  CAS  Google Scholar 

  44. Vargas VH, Paveglio RR, de Pauletto P et al (2020) Sisal fiber as an alternative and cost-effective adsorbent for the removal of methylene blue and reactive black 5 dyes from aqueous solutions. Chem Eng Commun 207:523–536. https://doi.org/10.1080/00986445.2019.1605362

    Article  CAS  Google Scholar 

  45. El Messaoudi N, El Khomri M, Dabagh A et al (2021) Synthesis of a novel nanocomposite based on date stones/CuFe2O4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution. Int J Environ Stud. https://doi.org/10.1080/00207233.2021.1929469

    Article  Google Scholar 

  46. Shahrin EWES, Narudin NAH, Shahri NNM et al (2022) Adsorption behavior and dynamic interactions of anionic acid blue 25 on agricultural waste. Molecules 27:1718. https://doi.org/10.3390/MOLECULES27051718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. El Messaoudi N, El Khomri M, Goodarzvand Chegini Z et al (2021) Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1912338

    Article  Google Scholar 

  48. Mondal NK, Kar S (2018) Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Appl Water Sci 8:157. https://doi.org/10.1007/s13201-018-0811-x

    Article  CAS  Google Scholar 

  49. Bhatti HN, Safa Y, Yakout SM et al (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861–870. https://doi.org/10.1016/J.IJBIOMAC.2020.02.093

    Article  CAS  PubMed  Google Scholar 

  50. Dbik A, El Messaoudi N, Lacherai A (2014) Valorisation of wood dates stones of a variety of palm tree of Tinghir region (Morocco): application to eliminate methylene blue. J Mater Environ Sci 5:2510–2514

    Google Scholar 

  51. Zhu C, Xia Y, Zai Y et al (2019) Adsorption and desorption behaviors of HPEI and thermoresponsive HPEI based gels on anionic and cationic dyes. Chem Eng J 369:863–873. https://doi.org/10.1016/J.CEJ.2019.03.169

    Article  CAS  Google Scholar 

  52. Li Q, Wang M, Yuan X et al (2019) Study on the adsorption and desorption performance of magnetic resin for Congo red. Environ Technol (UK). https://doi.org/10.1080/09593330.2019.1673830

    Article  Google Scholar 

  53. Ruan CQ, Strømme M, Lindh J (2018) Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr Polym 181:200–207. https://doi.org/10.1016/J.CARBPOL.2017.10.072

    Article  CAS  PubMed  Google Scholar 

  54. Jain R, Sikarwar S (2014) Adsorption and desorption studies of Congo red using low-cost adsorbent: activated de-oiled mustard. Desalin Water Treat 52:7400–7411. https://doi.org/10.1080/19443994.2013.837004

    Article  CAS  Google Scholar 

  55. Amran F, Zaini MAA (2021) Sodium hydroxide-activated Casuarina empty fruit: Isotherm, kinetics and thermodynamics of methylene blue and congo red adsorption. Environ Technol Innov 23:101727. https://doi.org/10.1016/J.ETI.2021.101727

    Article  CAS  Google Scholar 

  56. Munagapati VS, Kim DS (2016) Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder. J Mol Liq 220:540–548. https://doi.org/10.1016/J.MOLLIQ.2016.04.119

    Article  CAS  Google Scholar 

  57. Khanjani S, Morsali A (2014) Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”. Ultrason Sonochem 21:1424–1429. https://doi.org/10.1016/J.ULTSONCH.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  58. Chakraborty D, Gupta G, Kaur B (2016) Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expr Purif 128:123–133. https://doi.org/10.1016/j.pep.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  59. Nitnithiphrut P, Pimsri R, Seithtanabutara V (2017) RSM optimization for the production of activated carbons from para-wood residue. Key Engineering Materials. Trans Tech Publications Ltd, pp 100–104

  60. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767

    Article  Google Scholar 

  61. Hu X, Yan L, Wang Y, Xu M (2020) Freeze-thaw as a route to build manageable polysaccharide cryogel for deep cleaning of crystal violet. Chem Eng J 396:125354. https://doi.org/10.1016/j.cej.2020.125354

    Article  CAS  Google Scholar 

  62. Si J, Yuan TQ, Cui BK (2015) Exploring strategies for adsorption of azo dye Congo Red using free and immobilized biomasses of Trametes pubescens. Ann Microbiol 65:411–421. https://doi.org/10.1007/s13213-014-0874-3

    Article  CAS  Google Scholar 

  63. Sarim KM, Kukreja K, Shah I, Choudhary CK (2019) Biosorption of direct textile dye Congo red by Bacillus subtilis HAU-KK01. Bioremediat J 23:185–195. https://doi.org/10.1080/10889868.2019.1641466

    Article  CAS  Google Scholar 

  64. Zhang R, Zhang J, Zhang X et al (2014) Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study. J Taiwan Inst Chem Eng 45:2578–2583. https://doi.org/10.1016/j.jtice.2014.06.009

    Article  CAS  Google Scholar 

  65. Acemioǧlu B (2004) Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. J Colloid Interface Sci 274:371–379. https://doi.org/10.1016/j.jcis.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  66. Bensalah H, Bekheet MF, Younssi SA et al (2017) Removal of cationic and anionic textile dyes with Moroccan natural phosphate. J Environ Chem Eng 5:2189–2199. https://doi.org/10.1016/j.jece.2017.04.021

    Article  CAS  Google Scholar 

  67. Elwakeel KZ, Elgarahy AM, Elshoubaky GA, Mohammad SH (2020) Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled sepia shells 03 chemical sciences 0306 physical chemistry (incl. structural). J Environ Heal Sci Eng 18:35–50. https://doi.org/10.1007/s40201-019-00435-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare no conflict interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khomri, M., El Messaoudi, N., Dbik, A. et al. Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes. Chemistry Africa 5, 1083–1095 (2022). https://doi.org/10.1007/s42250-022-00395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00395-4

Keywords

Navigation