Skip to main content
Log in

Recent Advances and Prospects of Biochar-based Adsorbents for Malachite Green Removal: A Comprehensive Review

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This comprehensive review focuses on the recent progress related to biochar applications as an efficient removal agent for malachite green (MG) dye. Recently, biochar has been extensively employed as an effective adsorbent material through its exceptional characteristics, such as cost-effectiveness, high porosity, large surface area, and mass production. Many strategies are reported for biochar fabrication, including hydrothermal liquefaction and hydrothermal carbonization, pyrolysis, and gasification. The reported technologies for biochar synthesis used to remove MG are covered and discussed in detail. In addition, the key recent applications related to using different biochar adsorbents to remove MG are overviewed and discussed. The drawbacks related to this topic as well as the current challenges and perspectives are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ray B, Shaw R (2019) Water insecurity in Asian cities. Urban drought. Springer, pp 17–32

    Chapter  Google Scholar 

  2. Ray SS, Iroegbu AOC, Bordado JC (2020) Polymer-Based membranes and composites for safe, potable, and usable water: a survey of recent advances. Chem Afr 3(3):593–608

    Article  CAS  Google Scholar 

  3. Gude VG (2017) Desalination and water reuse to address global water scarcity. Rev Environ Sc Bio/Technol 16(4):591–609

    Article  Google Scholar 

  4. Chowdhary P et al (2020) Role of industries in water scarcity and its adverse effects on environment and human health. Environmental concerns and sustainable development. Springer, pp 235–256

    Chapter  Google Scholar 

  5. Hasan MK, Shahriar A, Jim KU (2019) Water pollution in Bangladesh and its impact on public health. Heliyon 5(8):e02145

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hajialigol S, Masoum S (2019) Optimization of biosorption potential of nano biomass derived from walnut shell for the removal of malachite green from liquids solution: experimental design approaches. J Mol Liq 286:110904

    Article  CAS  Google Scholar 

  7. Shanmugam S et al (2021) Bi-model cationic dye adsorption by native and surface-modified Trichoderma asperellum BPL MBT1 biomass: from fermentation waste to value-added biosorbent. Chemosphere 277:130311

    Article  CAS  PubMed  Google Scholar 

  8. Abou Oualid H et al (2020) Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes: characterization, mechanism, recyclability, and RSM optimization. ACS Omega 5(35):22192–22207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eshaq G, ElMetwally AE (2019) Bmim [OAc]-Cu2O/g-C3N4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. Ultrason Sonochem 53:99–109

    Article  CAS  PubMed  Google Scholar 

  10. Mosbah A et al (2019) Peptides fixing industrial textile dyes: a new biochemical method in wastewater treatment. J Chem 2019:1–7

    Article  Google Scholar 

  11. Senthil Kumar P, Varjani SJ, Suganya S (2018) Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: kinetic and isotherm modelling. Bioresour Technol 250:716–722

    Article  CAS  PubMed  Google Scholar 

  12. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697

    Article  CAS  Google Scholar 

  13. Nidheesh P, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227

    Article  CAS  PubMed  Google Scholar 

  14. Rigueto CVT et al (2021) Agroindustrial Wastes of banana pseudo-stem as adsorbent of textile dye: characterization, kinetic, and equilibrium studies. Chem Afr 4(4):1069–1078

    Article  CAS  Google Scholar 

  15. Khawaja H et al (2021) Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol 167:23–34

    Article  CAS  PubMed  Google Scholar 

  16. Azeez L et al (2020) Functionalization of rice husks with ortho-phosphoric acid enhanced adsorptive capacity for anionic dye removal. Chem Afr 3(2):457–467

    Article  CAS  Google Scholar 

  17. Wang Y et al (2017) Novel haptens synthesis and development of a monoclonal antibody-based enzyme-linked immunosorbent assay for leuco-malachite green in fish. Food Hydrocolloids 28(6):1460–1476

    CAS  Google Scholar 

  18. Loum J, Byamukama R, Wanyama P (2021) Efficient extraction of natural dyes from selected plant species. Chem Afr 4(3):677–689

    Article  CAS  Google Scholar 

  19. Aoulad El Hadj Ali Y et al (2021) Dried sewage sludge as an efficient adsorbent for pollutants: cationic methylene blue removal case study. Nanotechnol Environ Eng 6(1):1–13

    Article  Google Scholar 

  20. Aoulad El Hadj Ali Y et al (2022) Dehydrate sewage sludge as an efficient adsorbent for malachite green removal in textile wastewater: experimental and theoretical studies. Chem Afr. https://doi.org/10.1007/s42250-021-00308-x

    Article  Google Scholar 

  21. Shanmugam S et al (2017) Trichoderma asperellum laccase mediated crystal violet degradation—optimization of experimental conditions and characterization. J Environ Chem Eng 5(1):222–231

    Article  CAS  Google Scholar 

  22. Mittal A (2006) Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. J Hazard Mater 133(1–3):196–202

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    Article  CAS  PubMed  Google Scholar 

  24. Monsef R et al (2021) Sonochemical synthesis and characterization of PrVO4/CdO nanocomposite and their application as photocatalysts for removal of organic dyes in water. J Mol Liq 336:116339

    Article  CAS  Google Scholar 

  25. Leichtweis J et al (2021) Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4/biochar photocatalyst. Process Saf Environ Prot 150:497–509

    Article  CAS  Google Scholar 

  26. Huong DTM et al (2020) Highly efficient dye removal and lysozyme purification using strong and weak cation-exchange nanofiber membranes. Int J Biol Macromol 165(Pt A):1410–1421

    Article  CAS  PubMed  Google Scholar 

  27. Renita AA et al (2021) Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere 273:129634

    Article  CAS  PubMed  Google Scholar 

  28. Al-Fawwaz AT, Abdullah M (2016) Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. Int J Environ Sci Dev 7(2):95

    Article  CAS  Google Scholar 

  29. Tsvetkov MP et al (2021) Catalytic and photocatalytic properties of zinc-nickel ferrites. J Chem Sci. https://doi.org/10.1007/s12039-020-01882-2

    Article  Google Scholar 

  30. Hanafiah MAKM et al (2018) Methylene blue adsorption on aloe vera rind powder: kinetics, isotherm and mechanisms. Nat Environ Pollut Technol 17(4):1055–1064

    CAS  Google Scholar 

  31. Abdellaoui Y et al (2021) Iron-zirconium microwave-assisted modification of small-pore zeolite W and its alginate composites for enhanced aqueous removal of As (V) ions: experimental and theoretical studies. Chem Eng J 421:129909

    Article  CAS  Google Scholar 

  32. Pathy A et al (2022) Malachite green removal using algal biochar and its composites with kombucha SCOBY: an integrated biosorption and phycoremediation approach. Surfaces Interfaces 30:101880

    Article  CAS  Google Scholar 

  33. Adeniyi AG, Ighalo JO, Onifade DV (2020) Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and Albedo: product quality and potential applications. Chem Afr 3(2):439–448

    Article  CAS  Google Scholar 

  34. Kumar A (2021) Current and future perspective of microalgae for simultaneous wastewater treatment and feedstock for biofuels production. Chem Afr 4(2):249–275

    Article  CAS  Google Scholar 

  35. Harussani M, Sapuan S (2021) Development of kenaf biochar in engineering and agricultural applications. Chem Afr 5:1–17

    Google Scholar 

  36. Law XN et al (2022) Microalgal-based biochar in wastewater remediation: its synthesis, characterization and applications. Environ Res 204:111966

    Article  CAS  PubMed  Google Scholar 

  37. Lehmann J et al (2012) Stability of biochar in soil. Biochar for environmental management. Routledge, pp 215–238

    Chapter  Google Scholar 

  38. Deng H et al (2022) Adsorption of malachite green and Pb2+ by KMnO4-modified biochar: insights and mechanisms. Sustainability 14(4):2040

    Article  CAS  Google Scholar 

  39. Enaime G et al (2020) Biochar for wastewater treatment—conversion technologies and applications. Appl Sci 10(10):3492

    Article  CAS  Google Scholar 

  40. Sutar S, Patil P, Jadhav J (2022) Recent advances in biochar technology for textile dyes wastewater remediation: a review. Environ Res 209:112841

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed M, Hameed B (2020) Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: a review. J Clean Prod 265:121762

    Article  CAS  Google Scholar 

  42. Srivatsav P et al (2020) Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water 12(12):3561

    Article  CAS  Google Scholar 

  43. Saravanan P, Josephraj J, Thillainayagam BP (2021) A comprehensive analysis of biosorptive removal of basic dyes by different biosorbents. Environ Nanotechnol Monitor Manage 16:100560

    Article  CAS  Google Scholar 

  44. Zhao Y et al (2021) Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manage 300:113762

    Article  CAS  PubMed  Google Scholar 

  45. Qu J et al (2022) Applications of functionalized magnetic biochar in environmental remediation: a review. J Hazard Mater 434:128841

    Article  CAS  PubMed  Google Scholar 

  46. Praveen S et al (2022) Biochar for removal of dyes in contaminated water: an overview. Biochar 4(1):1–16

    Article  Google Scholar 

  47. Gupta R, Pandit C, Pandit S, Gupta PK, Lahiri D, Agarwal D, Pandey S (2022) Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J Mater Cycles Waste Manag 24:852–876. https://doi.org/10.1007/s10163-022-01391-z

    Article  CAS  Google Scholar 

  48. Sharma R et al (2020) A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem Afr 3(1):1–19

    Article  CAS  Google Scholar 

  49. Leng L et al (2015) Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155:77–85

    Article  CAS  Google Scholar 

  50. Hammud HH, Shmait A, Hourani N (2015) Removal of malachite green from water using hydrothermally carbonized pine needles. RSC Adv 5(11):7909–7920

    Article  CAS  Google Scholar 

  51. Das L et al (2021) Experimental and Numerical modeling on dye adsorption using pyrolyzed mesoporous biochar in Batch and fixed-bed column reactor: isotherm, thermodynamics, mass transfer, kinetic analysis. Surfaces Interfaces 23:100985

    Article  CAS  Google Scholar 

  52. Ahmad AA et al (2021) Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab J Chem 14(4):103104

    Article  CAS  Google Scholar 

  53. Ischia G, Fiori L (2021) Hydrothermal carbonization of organic waste and biomass: a review on process, reactor, and plant modeling. Waste Biomass Valor 12(6):2797–2824

    Article  CAS  Google Scholar 

  54. Zhang Z et al (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598

    Article  CAS  Google Scholar 

  55. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  56. Wang L, Chang Y, Liu Q (2019) Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application. J Clean Prod 225:972–983

    Article  CAS  Google Scholar 

  57. Maniscalco MP, Volpe M, Messineo A (2020) Hydrothermal carbonization as a valuable tool for energy and environmental applications: a review. Energies 13(16):4098

    Article  CAS  Google Scholar 

  58. Li X, Li Y (2019) Adsorptive removal of dyes from aqueous solution by KMnO4-modified rice husk and rice straw. J Chem 2019:1–9

    Google Scholar 

  59. Ponnusamy VK et al (2020) Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications. Biores Technol 310:123414

    Article  CAS  Google Scholar 

  60. Liu H, Ma M, Xie XA (2017) New materials from solid residues for investigation the mechanism of biomass hydrothermal liquefaction. Ind Crops Prod 108:63–71

    Article  CAS  Google Scholar 

  61. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    Article  CAS  Google Scholar 

  62. Li F et al (2020) Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin. Chemosphere 251:126335

    Article  CAS  PubMed  Google Scholar 

  63. Qin L et al (2020) Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells. Biores Technol 313:123682

    Article  CAS  Google Scholar 

  64. Sun Y et al (2017) Preparation of high performance H 2 S removal biochar by direct fluidized bed carbonization using potato peel waste. Process Saf Environ Prot 107:281–288

    Article  CAS  Google Scholar 

  65. Sun C et al (2021) Hydrolysis of disaccharides via carbon-based solid acids with binding and catalytic domains: glycosidic bond fracture properties and reaction kinetics. Fuel 300:120978

    Article  CAS  Google Scholar 

  66. Hagemann N et al (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10(2):182

    Article  Google Scholar 

  67. Kong H et al (2011) Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59(22):12116–12123

    Article  CAS  PubMed  Google Scholar 

  68. Kapoor L et al (2022) Biofuel production using fast pyrolysis of various plant waste biomasses in fixed bed and twin-screw reactors. Int J Energy Res. https://doi.org/10.1002/er.7904

    Article  Google Scholar 

  69. Zimmer T et al (2022) Techno-economic analysis of intermediate pyrolysis with solar drying: a chilean case study. Energies 15(6):2272

    Article  CAS  Google Scholar 

  70. Yrjälä K, Ramakrishnan M, Salo E (2022) Agricultural waste streams as resource in circular economy for biochar production towards carbon neutrality. Curr Opin Environ Sci Health 26:100339

    Article  Google Scholar 

  71. Suriapparao DV, Tejasvi R (2022) A review on role of process parameters on pyrolysis of biomass and plastics: present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2022.04.024

    Article  Google Scholar 

  72. Ge S et al (2020) Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products. Renew Sustain Energy Rev 127:109871

    Article  CAS  Google Scholar 

  73. Brindhadevi K et al (2021) Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction. Fuel 285:119106

    Article  CAS  Google Scholar 

  74. You S et al (2017) A critical review on sustainable biochar system through gasification: energy and environmental applications. Biores Technol 246:242–253

    Article  CAS  Google Scholar 

  75. Brewer CE et al (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28(3):386–396

    Article  CAS  Google Scholar 

  76. Deal C et al (2012) Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenerg 37:161–168

    Article  CAS  Google Scholar 

  77. Malyan SK et al (2021) Biochar for environmental sustainability in the energy-water-agroecosystem nexus. Renew Sustain Energy Rev 149:111379

    Article  Google Scholar 

  78. Ramsurn H, Kumar S, Gupta RB (2011) Enhancement of biochar gasification in alkali hydrothermal medium by passivation of inorganic components using Ca (OH) 2. Energy Fuels 25(5):2389–2398

    Article  CAS  Google Scholar 

  79. Do Minh T et al (2020) Biochar based catalysts for the abatement of emerging pollutants: a review. Chem Eng J 394:124856

    Article  CAS  Google Scholar 

  80. Spokas KA et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41(4):973–989

    Article  CAS  PubMed  Google Scholar 

  81. Ghodake GS et al (2021) Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: state-of-the-art framework to speed up vision of circular bioeconomy. J Clean Prod 297:126645

    Article  CAS  Google Scholar 

  82. Qambrani NA et al (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273

    Article  CAS  Google Scholar 

  83. Jiang C et al (2020) Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manage 102:732–742

    Article  CAS  Google Scholar 

  84. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022

    Article  CAS  Google Scholar 

  85. Antal M, Grønli M (2003) The art science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  86. Singh V, Soni A, Singh R (2016) Process optimization studies of malachite green dye adsorption onto eucalyptus (Eucalyptus globulus) wood biochar using response surface methodology. Orient J Chem 32(5):2621–2631

    Article  CAS  Google Scholar 

  87. Zhang B et al (2021) Porous carbon materials based on Physalis alkekengi L. husk and its application for removal of malachite green. Environ Technol Innov 21:101343

    Article  CAS  Google Scholar 

  88. Wu J et al (2020) High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere 246:125734

    Article  CAS  PubMed  Google Scholar 

  89. Soni B, Karmee SK (2020) Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel 271:117570

    Article  CAS  Google Scholar 

  90. Guedes RE, Luna AS, Torres AR (2018) Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrol 129:134–149

    Article  CAS  Google Scholar 

  91. Islam MR, Parveen M, Haniu H (2010) Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresour Technol 101(11):4162–4168

    Article  CAS  PubMed  Google Scholar 

  92. Lin Y-C et al (2018) Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Biores Technol 259:104–110

    Article  Google Scholar 

  93. Lan Y et al (2020) The absorption of kitchen waste mixed-base biochar on malachite green. Chem Lett 49(1):20–23

    Article  CAS  Google Scholar 

  94. Jechan L, Ki-Hyun K, Eilhann K (2017) Biochar as a catalyst. Renew Sustain Energy Rev 77:70–79

    Article  Google Scholar 

  95. Cárdenas-Aguiar E et al (2017) The effect of biochar and compost from urban organic waste on plant biomass and properties of an artificially copper polluted soil. Int Biodeterior Biodegradation 124:223–232

    Article  Google Scholar 

  96. Zhou Y et al (2021) Production and beneficial impact of biochar for environmental application: a comprehensive review. Biores Technol 337:125451

    Article  CAS  Google Scholar 

  97. dos Santos GEDS et al (2021) Layered double hydroxides/biochar composites as adsorbents for water remediation applications: recent trends and perspectives. J Clean Prod 284:124755

    Article  Google Scholar 

  98. Chen H et al (2017) Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: pore structure, aromaticity and gasification activity. Biores Technol 228:241–249

    Article  CAS  Google Scholar 

  99. Askeland M, Clarke B, Paz-Ferreiro J (2019) Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ 7:e6784

    Article  PubMed  PubMed Central  Google Scholar 

  100. Werdin J et al (2020) Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci Total Environ 705:135856

    Article  CAS  PubMed  Google Scholar 

  101. Leng L et al (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204

    Article  CAS  PubMed  Google Scholar 

  102. Dai L et al (2018) Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal. Biores Technol 267:510–516

    Article  CAS  Google Scholar 

  103. Kathrin W, Peter Q (2018) Properties of biochar. Fuel 217:240–261

    Article  Google Scholar 

  104. Ortiz LR et al (2020) Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renew Energy 155:837–847

    Article  CAS  Google Scholar 

  105. Li S et al (2018) Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J Anal Appl Pyrol 133:136–146

    Article  CAS  Google Scholar 

  106. Chandra S, Bhattacharya J (2019) Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J Clean Prod 215:1123–1139

    Article  CAS  Google Scholar 

  107. Cely P et al (2015) Agronomic properties of biochars from different manure wastes. J Anal Appl Pyrol 111:173–182

    Article  CAS  Google Scholar 

  108. Carrier M et al (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrol 96:24–32

    Article  CAS  Google Scholar 

  109. Van Zwieten L et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1):235–246

    Article  Google Scholar 

  110. Tag AT et al (2016) Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrol 120:200–206

    Article  CAS  Google Scholar 

  111. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio/Technol 19(1):191–215

    Article  CAS  Google Scholar 

  112. Li S et al (2019) Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses. J Clean Prod 215:890–902

    Article  CAS  Google Scholar 

  113. Li R et al (2018) Facilitative capture of As (V), Pb (II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. J Environ Manage 212:77–87

    Article  CAS  PubMed  Google Scholar 

  114. Choudhary M, Kumar R, Neogi S (2020) Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+ 2 and Ni+ 2 from water. J Hazard Mater 392:122441

    Article  CAS  PubMed  Google Scholar 

  115. Das L et al (2020) Treatment of malachite green dye containing solution using bio-degradable Sodium alginate/NaOH treated activated sugarcane baggsse charcoal beads: Batch, optimization using response surface methodology and continuous fixed bed column study. J Environ Manage 276:111272

    Article  CAS  PubMed  Google Scholar 

  116. Kang C et al (2018) Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization. Chem Res Chin Univ 34(4):622–627

    Article  CAS  Google Scholar 

  117. Fang J et al (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21

    Article  CAS  Google Scholar 

  118. Saravanan A et al (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  CAS  PubMed  Google Scholar 

  119. Vigneshwaran S et al (2021) Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes. Surfaces Interfaces 23:100920

    Article  CAS  Google Scholar 

  120. Giri BS et al (2022) Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere 287:132282

    Article  CAS  PubMed  Google Scholar 

  121. Eltaweil A et al (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31(3):1253–1263

    Article  CAS  Google Scholar 

  122. Vigneshwaran S et al (2021) Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: isotherm, kinetics and mechanisms. J Mol Liq 326:115303

    Article  CAS  Google Scholar 

  123. El-Bindary AA et al (2015) Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: kinetic, equilibrium and thermodynamic studies. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1842–1849

    Article  CAS  Google Scholar 

  124. Ghosh A, Das G (2020) Green synthesis of Sn (II)-BDC MOF: preferential and efficient adsorption of anionic dyes. Microporous Mesoporous Mater 297:110039

    Article  CAS  Google Scholar 

  125. Kataria N, Garg V (2019) Application of EDTA modified Fe3O4/sawdust carbon nanocomposites to ameliorate methylene blue and brilliant green dye laden water. Environ Res 172:43–54

    Article  CAS  PubMed  Google Scholar 

  126. Akpe SG et al (2020) Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions. Microporous Mesoporous Mater 296:109979

    Article  CAS  Google Scholar 

  127. Shao Q et al (2021) Preparation of copper doped walnut shell-based biochar for efficiently removal of organic dyes from aqueous solutions. J Mol Liq 336:116314

    Article  CAS  Google Scholar 

  128. Alver E, Metin AÜ (2017) Chitosan based metal-chelated copolymer nanoparticles: laccase immobilization and phenol degradation studies. Int Biodeterior Biodegradation 125:235–242

    Article  CAS  Google Scholar 

  129. Qiu X et al (2019) Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for Laccase immobilization and its application in 2,4-dichlorophenol removal. Colloids Surf B Biointerfaces 179:260–269

    Article  CAS  PubMed  Google Scholar 

  130. Li C et al (2022) Adsorption characteristics and molecular simulation of malachite green onto modified distillers’ grains. Water 14(2):171

    Article  CAS  Google Scholar 

  131. Nanthamathee C, Dechatiwongse P (2021) Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Mater Chem Phys 258:123924

    Article  CAS  Google Scholar 

  132. Ali F et al (2020) Adsorption isotherm, kinetics and thermodynamic of acid blue and basicblue dyes onto activated charcoal. Case Stud Chem Environ Eng. https://doi.org/10.1016/j.cscee.2020.100040

    Article  Google Scholar 

  133. Liu N et al (2018) Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arab J Chem 11(8):1281–1291

    Article  CAS  Google Scholar 

  134. Nazari G et al (2016) Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: a fixed-bed column study. Appl Surf Sci 375:144–153

    Article  CAS  Google Scholar 

  135. Athira S et al (2019) Adsorption studies of hydrothermally synthesized tin oxide nanoparticles. In: AIP Conference Proceedings. AIP Publishing LLC

  136. Zhang H, Zhang F, Huang Q (2017) Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Adv 7(10):5790–5799

    Article  CAS  Google Scholar 

  137. Tsai C-Y et al (2022) Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters. Biores Technol 347:126749

    Article  CAS  Google Scholar 

  138. Leng L et al (2015) Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Appl Surf Sci 346:223–231

    Article  CAS  Google Scholar 

  139. Mansouri FE et al (2021) Dye removal from colored textile wastewater using seeds and biochar of barley (Hordeum vulgare L.). Appl Sci 11(11):5125

    Article  Google Scholar 

  140. Leng L, Yuan X, Huang H, Shao J, Wang H, Chen X, Zeng G (2015) Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Appl Surf Sci 346:223–231

    Article  CAS  Google Scholar 

  141. Mansouri FE, Farissi HE, Zerrouk MH, Cacciola F, Bakkali C, Brigui J, Palma Lovillo M, Esteves da Silva JC (2021) Dye removal from colored textile wastewater using seeds and biochar of Barley (Hordeum vulgare L.). Appl Sci 11(11):5125

    Article  Google Scholar 

  142. Ganguly P, Sarkhel R, Das P (2020) Synthesis of pyrolyzed biochar and its application for dye removal: batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces Interfaces 20:100616

    Article  CAS  Google Scholar 

  143. Yang S-S et al (2019) Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. J Clean Prod 227:33–47

    Article  CAS  Google Scholar 

  144. Mohamad M et al (2019) Removal of malachite green by sugarcane bagasse biochar using response surface methodology. In: AIP Conference Proceedings. AIP Publishing LLC

  145. Coskun Y, Aksuner N, Yanik J (2019) Sandpaper wastes as adsorbent for the removal of brilliant green and malachite green dye. Acta Chim Slov 66(2):402–413

    Article  CAS  PubMed  Google Scholar 

  146. Rawat AP, Singh DP (2018) Decolourization of malachite green dye by mentha plant biochar (MPB): a combined action of adsorption and electrochemical reduction processes. Water Sci Technol 77(5–6):1734–1743

    Article  CAS  PubMed  Google Scholar 

  147. Singh V, Soni A, Singh R (2017) Comparative study of Central Composite and Box-Behnken design for the optimization of malachite green dye adsorption onto Sal seed activated char. J Environ Biol 38(5):849

    Article  CAS  Google Scholar 

  148. Liu W-J et al (2013) Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci Rep 3(1):1–7

    Google Scholar 

  149. Sivaprakash K et al (2021) Single-step synthesis of efficient nanometric boron carbon nitride semiconductor for photocatalysis. Mater Res Bull 134:111106

    Article  CAS  Google Scholar 

  150. Palapa NR et al (2021) Competitive removal of cationic dye using NiAl-LDH modified with hydrochar. Ecol Eng Environ Technol 22:124

    Article  Google Scholar 

  151. Devi SA, Singh KJ, Devi KN (2020) Hydrothermal synthesis of SnO2 for the photocatalytic degradation of malachite green dye. In: AIP Conference Proceedings. AIP Publishing LLC

  152. Stoyanova D et al (2019) Mechanical milling of hydrothermally obtained CaTiO3 powders—morphology and photocatalytic activity. Nano-Structures Nano-Objects 18:100301

    Article  CAS  Google Scholar 

  153. Vadivel S et al (2018) One-pot hydrothermal synthesis of CuCo2S4/RGO nanocomposites for visible-light photocatalytic applications. J Phys Chem Solids 123:242–253

    Article  CAS  Google Scholar 

  154. Wang Q et al (2021) Mechanochemical synthesis of MAPbBr 3/carbon sphere composites for boosting carrier-involved superoxide species. J Environ Sci 104:399–414

    Article  CAS  Google Scholar 

  155. Zhu X et al (2014) Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustain Chem Eng 2(4):969–977

    Article  CAS  Google Scholar 

  156. Mohadi R, Palapa NR, Lesbani A (2021) Preparation of Ca/Al-layered double hydroxides/biochar composite with high adsorption capacity and selectivity toward cationic dyes in aqueous. Bull Chem React Eng Catal 16(2):244–252

    Article  CAS  Google Scholar 

  157. Sharma G et al (2019) Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. J Mol Liq 275:499–509

    Article  CAS  Google Scholar 

  158. Zhang J et al (2016) A novel magnetic biochar from sewage sludge: synthesis and its application for the removal of malachite green from wastewater. Water Sci Technol 74(8):1971–1979

    Article  CAS  PubMed  Google Scholar 

  159. Wang P et al (2022) Enhanced removal of malachite green using calcium-functionalized magnetic biochar. Int J Environ Res Public Health 19(6):3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Song C et al (2022) Sequential combined adsorption and solid-phase photocatalysis to remove aqueous organic pollutants by H3PO4-modified TiO2 nanoparticles anchored on biochar. J Water Process Eng 45:102467

    Article  Google Scholar 

  161. Dai Y et al (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof . Abdelmonaim Azzouz for his comments and revisions of our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youssef Aoulad El Hadj Ali, Mohammadi Ahrouch, Youness Abdellaoui or Mostafa Stitou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoulad El Hadj Ali, Y., Ahrouch, M., Ait Lahcen, A. et al. Recent Advances and Prospects of Biochar-based Adsorbents for Malachite Green Removal: A Comprehensive Review. Chemistry Africa 6, 579–608 (2023). https://doi.org/10.1007/s42250-022-00391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00391-8

Keywords

Navigation