Skip to main content

Advertisement

Log in

Photo-Electrocatalytic Applications of Pure and Bismuth Doped Zinc Oxide Thin Films by Spray Pyrolysis

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Pure and bismuth doped zinc oxide thin films were grown by spray pyrolysis and they subjected to spectral and optical analysis. The surface morphology measurement of HR-SEM and HR-TEM images show nano flower shaped structure is observed by Bismuth. Zinc oxide thin films, the EDX analysis confirms that Zn, Bi and O present in thin films. XRD analysis reveals that as synthesized films polycrystalline wurtzite structure (Zincite), are and doped materials are present was done and average crystalline size (26 nm and 19 nm) was calculated by Scherer’s formula. The PL analysis from doped thin film decreased intensity appear high efficiency was discussed. The optical study of UV–Vis DRS identify ZnO thin film increased band gab decreased from 3.32 eV to 3.20 eV and the efficiency increases from 5.6 mA/cm2 to 7.00 mA/cm2 respectively. And the doped thin films this result identifies decreased band gab energy high efficiency of catalytic and electrochemical application of (DSSCs) was done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LöfflerJ GR, Linden JL, van de Sanden MCM, Schropp REI (2001) Amorphous silicon solar cells on natively textured ZnO grown by PECVD. Thin Solid Films 392(2):315–319

    Article  Google Scholar 

  2. Owen J, Son MS, Yoo KH, Ahn BD, Lee SY (2007) Organic photovoltaic devices with Ga-Doped ZnO Electrode. Appl Phys Lett 90(3):033512

    Article  Google Scholar 

  3. Wang X, Ding Y, Li Z, Song J, Wang ZL (2009) Single-crystal mesoporous ZnO thin films composed of nanowalls. J Phys Chem C 113(5):1791–1794

    Article  CAS  Google Scholar 

  4. Makino T, Chia CH, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Matsumoto Y, Koinuma H (2002) High-throughput optical characterization for the development of ZnO-based ultraviolet semiconductor-laser. Appl Surf Sci 189(3–4):277–283

    Article  CAS  Google Scholar 

  5. Kino GS, Wagers RS (1973) Theory of interdigital couplers on nonpiezoelectric substrates. J Appl Phys 44(4):1480–1488

    Article  Google Scholar 

  6. Thomas DG (1960) The exciton spectrum of zinc oxide. J Phys Chem Solids 15(1–2):86–96

    Article  CAS  Google Scholar 

  7. Sahu DR (2010) Properties of doped ZnO thin films grown by simultaneous dc and RF magnetron sputtering. Mater Sci Eng B 171(1–3):99–103

    Article  CAS  Google Scholar 

  8. Tokumoto MS, Smith A, Santilli CV, Pulcinelli SH, Craievich AF, Elkaim E, Traverse A, Briois V (2002) Structural electrical and optical properties of undoped and indium doped ZnO thin films prepared by the pyrosol process at different temperatures. Thin Solid Films 416(1–2):284–293

    Article  CAS  Google Scholar 

  9. Shin SW, Sim KU, Moon JH, Kim JH (2010) The effect of processing parameters on the properties of Ga-Doped ZnO thin films by RF magnetron sputtering. Curr Appl Phys 10(2):S274–S277

    Article  Google Scholar 

  10. Krongarrom P, Rattanachan ST, Fangusuwannarak T (2012) ZnO doped with Bismuth in case of in-phass behavior for solar cell application. Engg J 16(3):59–70

    Article  Google Scholar 

  11. Xingwen Z, Yongqiang L, Ye L, Yingwei L, Yiben X (2006) Study on ZnO Thin films deposited on Sol-Gel Grown ZnO buffer by RF magnetron sputtering. Vacuum 81(4):502–506

    Article  Google Scholar 

  12. Faÿ S, Kroll U, Bucher C, Vallat-Sauvain E, Shah A (2005) Low pressure chemical vapour deposition of ZnO Layers for thin-film solar cells: temperature-induced morphological changes. Sol Energy Mater Sol Cells 86(3):385–397

    Article  Google Scholar 

  13. Ghosh R, Paul GK, Basak D (2005) Effect of thermal annealing treatment on structural, electrical and optical properties of transparent Sol-Gel ZnO thin films. Mater Res Bull 40(11):1905–1914

    Article  CAS  Google Scholar 

  14. Girtan M, Rusu GG, Dabos-Seignon S, Rusu M (2008) Structural and electrical properties of zinc oxide thin films prepared by thermal oxidation. Appl Surf Sci 254(13):4179–4185

    Article  CAS  Google Scholar 

  15. Paraguay DF, Estrada LW, Acosta NDR, Andrade E, Miki-Yoshida M (1999) Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350(1–2):192–202

    Article  Google Scholar 

  16. RaoTP P, Santhoshkumar MC (2009) Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl Surf Sci 255(8):4579–4584

    Article  Google Scholar 

  17. Gaus APS, Xiang W, Nepal A, Wright JP, Chen P, Nagaraja T, Sigdel S, Lacroix B, Sorensen CM, Das SR (2021) Graphene aerosol gel ink for printing micro- supercapacitors. ACS Appl Energy Mater 4(8):7632–7641

    Article  Google Scholar 

  18. Dutta M, Mridha S, Basak D (2008) Effect of sol concentration on the properties of ZnO thin films prepared by sol-gel technique. Appl Surf Sci 254(9):2743–2747

    Article  CAS  Google Scholar 

  19. Chouikh F, Beggah Y, Mati H, Bouznit Y, Birem M, Ariche N, Aida MS (2013) Characterisation of ZnO Thin films doped andco-doped grown by pneumatic spray pyrolysis. Int J Nanopart 6:23

    Article  Google Scholar 

  20. Zhong W, Liu F, Cai L, Peng D, Zhou C, Zeng L, Liu X, Li Y (2011) J Alloys Compd 509(9):3847–3851

    Article  CAS  Google Scholar 

  21. Km N, Higuchi E, Inoue H (2020) Pt nanoparticle-decorated two-dimensional oxygen-deficient TiO 2 nanosheets as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Nanoscale 12(20):11055–11062

    Article  Google Scholar 

  22. Wu F, Fang L, Pan YJ, Zhou K, Ruan HB, Liu GB, Kong CY (2011) Effect of annealing treatment on structural, electrical, and optical properties of Ga-Doped ZnO thin films deposited by RF magnetron sputtering. Thin Solid Films 520(2):703–707

    Article  CAS  Google Scholar 

  23. Jiang M, Liu X, Wang H (2009) Conductive and transparent Bi-Doped ZnO thin films prepared by rf magnetron sputtering. Surf Coat Technol 203(24):3750–3753

    Article  CAS  Google Scholar 

  24. OgawaH KA, Ohsashi M (2008) Superconducting properties of ZnO-doped (Bi, Pb)-2223 thick film on Ni and NiO substrates prepared by spray deposition technique. Phys C 468(6):447–452

    Article  Google Scholar 

  25. Kazmi J, Ooi PCG, Boon TL, Min KR (2020) Bi-doping improves the magnetic properties of zinc oxide nanowires. RSC Adv 10(39):23297–23311

    Article  CAS  Google Scholar 

  26. Rajasekaran M, Kamalakkannan J, Arunachalam A, Kumaresan P (2019) Specific advancements modified CrO4-ZnO thin films characterization and application of photocatalytic purification of carcinogenic dye and synthetic dye-sensitized solar cells. Int J Anal Exp Modal Anal 11(12):1081–1103

    Google Scholar 

  27. Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2008) Structural, optical and electrical properties of F-Doped ZnO nanorod semiconductor thin films deposited by sol-gel process. Appl Surf Sci 255(5):2353–2359

    Article  CAS  Google Scholar 

  28. Ergin B, Ketenci E, Atay F (2009) Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique. Int J Hydr Energy 34(12):5249–5254

    Article  CAS  Google Scholar 

  29. Kamalakkannan J, Chandraboss VL, Prabha S, Karthikeyan B, Senthilvelan S (2015) High photocatalytic activity of heterostruturedinmoo3-TiO2 nanocomposite material under natural sun light irradiation. Can Chem Translator 3:327–339

    CAS  Google Scholar 

  30. Yu J, Yu H, Ao CH, Lee SC, Yu JC, Ho W (2006) Preparation, Characterization and photocatalytic activity of In Situ Fe-Doped TiO2 thin films. Thin Solid Films 496(2):273–280

    Article  CAS  Google Scholar 

  31. Balachandran S, Karthikeyan R, Selvakumar K, Swaminathan M (2020) Photo-electrocatalytic activity of praseodymium oxide modified titaniananorods. Int J Environ Anal Chem 81:1–17

    Article  Google Scholar 

  32. Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Highly efficient, solar active, and reusable photocatalyst: Zr-Loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 29(3):939–949

    Article  CAS  Google Scholar 

  33. Balachandran S, Praveen SG, Velmurugan R, Swaminathan M (2014) Facile fabrication of highly efficient, reusable heterostructured Ag–ZnO−CdO and its twin applications of dye degradation under natural sunlight and self-cleaning. RSC Adv 4(9):4353–4362

    Article  CAS  Google Scholar 

  34. Boumezoued A, Guergouri K, Barille R, Rechem D, Zaabat M, Rasheed M (2019) ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application. J Alloys Comps 791:550–558

    Article  CAS  Google Scholar 

  35. Keerti MN, Higuchi E, Inoue H (2020) Two-dimensional oxygen-deficient TiO2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 455:227972

    Article  Google Scholar 

  36. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44 (10): manuscript ID: CS-REV-09-2014-000309.R2

  37. Ibraheem AM, Kamalakkannan J (2020) Sustainable scienentific advancements modified Agw)-ZnO thin films characterization and application of photocatalytic purification of carcinogenic dye in deionizer water. Mater Sci Ener 3:183–192

    CAS  Google Scholar 

  38. Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A 219(2–3):188–194

    Article  CAS  Google Scholar 

  39. Grätzel M (2005) Dye-sensitized solid-state heterojunction solar cells. MRS Bull 30(1):23–27

    Article  Google Scholar 

  40. Keerti MN (2021) Highly stable spinel oxide cathode for rechargeable Li–O2 batteries in non-aqueous liquid and gel-based electrolytes. ACS Appl Ener Mater 4(1):1014–1020

    Article  Google Scholar 

Download references

Acknowledgements

The authors grateful to acknowledge, The HOD, Department of Physics, TAG Arts College, provided necessary facility to completing this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed evenly.

Corresponding authors

Correspondence to P. Kumaresan or S. Nithiyanantham.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, M., Kumaresan, P., Nithiyanantham, S. et al. Photo-Electrocatalytic Applications of Pure and Bismuth Doped Zinc Oxide Thin Films by Spray Pyrolysis. Chemistry Africa 5, 89–97 (2022). https://doi.org/10.1007/s42250-021-00300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00300-5

Keywords

Navigation