Skip to main content
Log in

Spectrophotometric Nitrate Determination in Natural Waters by Conversion into 4-Nitroguaiacol

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Nitrate determination in natural waters by spectrophotometry was described. Nitrate was converted to 4-nitroguaiacol by nitration of guaiacol (2-methoxyphenol) in concentrated sulfuric acid medium. The UV spectrum of nitro product presents a sensitive and reproducible band toward 329 nm with molar absorption coefficient of 2023 L mol−1  cm−1. The method gives a linear calibration curve ranging from 0.2 to 24 mg  L−1 of \({\mathrm{NO}}_{3}^{-}\) with a reproducibility (RSD) of 1.07% and a limit of detection of 0.05 mg  L−1 of \({\mathrm{NO}}_{3}^{-}\). The application of paired-t-test between the present method and sodium salicylate method, commonly accepted as reference method for nitrate determination, shows there is no significative difference between them and having the same accuracy and exactitude. The method can be used to determine nitrate in ground and surface waters, using less chemicals and requiring less operating procedure time than those of the reference one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camargo JA, Alonso A, Salamanca A (2005) Chemiosphere 58:1255–1267

    Article  CAS  Google Scholar 

  2. Camargo JA, Ward JV (1995) Chemiosphere 31:3211–3216

    Article  CAS  Google Scholar 

  3. Wherry SA, Tesoriero AJ, Terziotti S (2020) Environ Sci Technol 55:902–911

    Article  PubMed  Google Scholar 

  4. WHO (1993) Recommendations, vol. 1, 2nd edn. WHO, Geneva

    Google Scholar 

  5. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Cambridge University Press, London

    Book  Google Scholar 

  6. Frei RW, Brinkman VA (1983) Analysis and chemistry of water pollutants. New York

  7. Hunault CC, Lambers AC, Mensinga TT, Van Isselt JW, Koppeschaar HPF, Meulenbelt J (2007) Toxicol Lett 175:64–70

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee S, Woo SH (2009) J Hazard Mater 164:1012–1018

    Article  CAS  PubMed  Google Scholar 

  9. Bradberry S (2007) Medicine 35:552–553

    Article  Google Scholar 

  10. Camargo JA, Alonso A (2006) Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  11. Shimura R, Ijiri K, Mizuro R, Nagaoka S (2002) Adv Space Res 30:803–808

    Article  CAS  PubMed  Google Scholar 

  12. Huang S, Wang F, Elliott EM, Zhu Z, Zhu W, Koba K, Yu Z, Hobbie EA, Michalski G, Kang R, Wang A, Zhu J, Fu S, Fang Y (2020) Environ Sci Technol 54:4231–4239

    Article  CAS  PubMed  Google Scholar 

  13. Crumpton WG, Isenhart TM, Mitchell PD (1992) Limnol Oceanogr 37:907–913

    Article  CAS  Google Scholar 

  14. Karlsson M, Karlberg B, Olsson RJO (1995) Anal Chem Acta 312:107–113

    Article  CAS  Google Scholar 

  15. Zhi-Qi Z, Lou-Jun G, Han-Ying Z, Qian-Guang L (1998) Anal Chim Acta 370:59–63

    Article  CAS  Google Scholar 

  16. Monser L, Sadok S, Greenway GM, Shah I, Uglow RF (2002) Talanta 57:511–518

    Article  CAS  PubMed  Google Scholar 

  17. Abbes MN, Mostafa GA (2000) Anal Chim Acta 410:185–192

    Article  Google Scholar 

  18. Kojlo A, Gorodkiewicz E (1995) Anal Chim Acta 302:283–287

    Article  CAS  Google Scholar 

  19. Ferree MA, Shannon RD (2001) Water Res 35:327–332

    Article  CAS  PubMed  Google Scholar 

  20. Olson RJ (1980) Limnol Oceanogr 25:758–760

    Article  CAS  Google Scholar 

  21. Guerrero RS, Benito CG, Calatayud JM (1996) Talanta 43:239–246

    Article  Google Scholar 

  22. Pai SC, Su YT, Chou Y, Ho TY (2021) ACS EST Water 1:1542–1532

    Article  Google Scholar 

  23. Bastian R, Weberling R, Pallila F (1957) Anal Chem 29:1795–1797

    Article  CAS  Google Scholar 

  24. Goldman E, Jacobs RJ (1961) J Am Water Works Assoc 53:187–191

    Article  CAS  Google Scholar 

  25. Hoather RC, Rackham RF (1959) Analyst 84:548–551

    Article  CAS  Google Scholar 

  26. Tardat-Henry M, Beaudry J-P (1992) Chimie des eaux. Presses inter Polytechnique

    Google Scholar 

  27. Wetters JH, Uglum KL (1970) Anal Chem 42:335–340

    Article  CAS  Google Scholar 

  28. Simal J, Lage MA, Iglesias I (1985) J Assoc Off Anal Chem Int 68:962–964

    CAS  Google Scholar 

  29. Suzuki N, Kuroda R (1987) Analyst 112:1077–1079

    Article  CAS  Google Scholar 

  30. Dekhil AB, Ghorbel A, Boubacker T (2014) Anal Chem Indian J 14:318–327

    Google Scholar 

  31. Rodier J (2005) L’analyse de l’eau. Dunod, Paris

    Google Scholar 

  32. Holler AC, Huch RV (1949) Anal Chem 21:1385–1389

    Article  CAS  Google Scholar 

  33. Taras MJ (1950) Anal Chem 22:1020–1022

    Article  CAS  Google Scholar 

  34. Lewis DG (1961) Anal Chem 33:1127–1128

    Article  CAS  Google Scholar 

  35. Hartley AM, Asai RI (1963) Anal Chem 35:1207–1213

    Article  CAS  Google Scholar 

  36. Lohumi N, Gosain S, Jain A, Gupta VK, Verma KK (2004) Anal Chim Acta 505:231–237

    Article  CAS  Google Scholar 

  37. Scheiner D (1974) Water Res 8:835–840

    Article  CAS  Google Scholar 

  38. Zhong J, Fischer CJ (2006) Mar Chem 99:220–226

    Article  Google Scholar 

  39. Standard AFNOR NF T 90-012 (1975)

  40. Standard AFNOR NF T 90-045 (1989)

  41. Monterio MIC, Ferreira FN, de Oliveira NMM, Ávila AK (2003) Anal Chim Acta 477:125–129

    Article  Google Scholar 

  42. Hoggett JG, Moodle RB, Penton JR, Schofield K (1971) Nitration and aromatic reactivity. Cambridge University Press, Cambridge

    Google Scholar 

  43. Pourali AR, Goli A (2011) J Chem Sci 123:63–67

    Article  CAS  Google Scholar 

  44. Rodrigues JAR, de Filho OAP, Moran PJS, Custόdio R (1999) Tetrahedron 55:6733–6738

    Article  CAS  Google Scholar 

  45. Yang B, Wang HZY, Shu PZJ, Sun W, Ma P (2016) Atmos Environ 125:243–251

    Article  CAS  Google Scholar 

  46. Meng L, Coeur C, Fayad L, Houzel N, Genevray P, Bouzidi H, Tomas A, Chen W (2020) Atmos Environ 240:1–9

    Article  Google Scholar 

  47. Krofliĉ A, Anders J, Drventić I, Mettke P, Böge O, Mutzel A, Kleffmann J, Herrmann H (2021) ACS Earth Sp Chem 5:1083–1093

    Article  Google Scholar 

  48. Krofliĉ A, Huš M, Grilic M, Grgić I (2018) Environ Sci Technol 52:13756–13765

    Article  PubMed  Google Scholar 

  49. Kitanovski Z, Čusak A, Grgié I, Claeys M (2014) Atmos Meas Tech 7:2457–2470

    Article  Google Scholar 

  50. Ofner J, Krüger H-U, Grothe H, Schmitt-Kopplin P, Whitmore K, Zetzsch C (2011) Atmos Chem Phys 11:1–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ABD: research idea, bibliographic research, methodology, experimental works, writing the paper. AH: review and editing, project administration.

Corresponding author

Correspondence to Abdelbasset Ben Dekhil.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekhil, A.B., Hafiane, A. Spectrophotometric Nitrate Determination in Natural Waters by Conversion into 4-Nitroguaiacol. Chemistry Africa 5, 115–122 (2022). https://doi.org/10.1007/s42250-021-00291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00291-3

Keywords

Navigation