Skip to main content
Log in

Dielectric, Impedance, Magnetic and Magnetocapacitance Investigations in ferrite–manganite nanocomposites for Hydroelectric Cell applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this work, nanoparticles of CoFe2O4 and La0.67Sr0.33MnO3 and nanocomposites (1 − x)CoFe2O4 − (x)La0.67Sr0.33MnO3 (for x = 0.10, 0.20, 0.30) have been made through sol–gel route and solid-state route, respectively. The structural analysis via X-ray diffraction (XRD) displays formation of spinel CoFe2O4 (CFO) having crystallite size 35 nm and rhombohedral La0.67Sr0.33MnO3 (LSMO) having crystallite size 15 nm. Field emission scanning electron microscope and energy-dispersive X-ray analysis (FESEM-EDAX) shows the particle size of 51.35 nm and 24.77 nm for CFO and LSMO, respectively. The particle size and crystallite size decreased in CFO-LSMO nanocomposites with increase in LSMO content. The dielectric measurements display strong Maxwell–Wagner polarization and display strong composition dependence attributed to homogenous distribution of LSMO as well as non-pinning of domain wall of CFO. The impedance spectroscopy displayed thermally activated conduction mechanism. The magnetocapacitance measurements displayed improvement in magnetoelectricity with LSMO content. The hydroelectric cell of CFO-LSMO nanocomposites exhibited a strong correlation between the content of LSMO and the efficiency of the cell. The 0.7LSMO-0.3CFO composite exhibited improved performance in hydroelectric cell as can be observed from drastic difference in impedance from 8×104 to 3×103 Hz. These improvements in the structural, electrical, magnetocapacitance and hydroelectric cell performance with LSMO in the prepared composites suggest their potential use in magnetoelectric and hydroelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. X. Zhang, X. Kan, M. Wang, R. Rao, G. Zheng, M. Wang, Y. Ma, Temperature-dependent magnetic interactions and their effects on the macroscopic magnetism of CoFe2O4/La0.7Sr0.3MnO3 composites. J. Alloys Compd. 853, 157384 (2021). https://doi.org/10.1016/j.jallcom.2020.157384

    Article  CAS  Google Scholar 

  2. A. Haque, A.R. Mahbub, M. Abdullah-Al Mamun, M. Reaz, K. Ghosh, Fabrication and thickness-dependent magnetic studies of tunable multiferroic heterostructures (CFO/LSMO/LAO). Appl. Phys. A. 125, 357 (2019). https://doi.org/10.1007/s00339-019-2620-y

  3. P.A. Kumar, K. Lashgari, S. Naim Katea, O. Karis, K. Jansson, D.D. Sarma, G. Westin, All-alkoxide based deposition and properties of a multilayer La0.67Sr0.33MnO3/CoFe2O4/La0.67Sr0.33MnO3 film. Eur. J. Inorg. Chem. 2021, 1736–1744 (2021). https://doi.org/10.1002/ejic.202001162

  4. T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, The structural, magnetic and magnetic entropy changes on CoFe2O4/CoFe2 composites for magnetic refrigeration application. J. Magn. Magn. Mater. 444, 297–306 (2017). https://doi.org/10.1016/j.jmmm.2017.08.008

    Article  CAS  Google Scholar 

  5. V. Daboin, S. Briceño, J. Suárez, L. Carrizales-Silva, O. Alcalá, P. Silva, G. Gonzalez, Magnetic SiO 2 -Mn 1–x Co x Fe 2 O 4 nanocomposites decorated with Au@Fe 3 O 4 nanoparticles for hyperthermia. J. Magn. Magn. Mater. 479, 91–98 (2019). https://doi.org/10.1016/j.jmmm.2019.02.002

    Article  CAS  Google Scholar 

  6. R.M. Thankachan, R. Balakrishnan, Synthesis strategies of single-phase and composite multiferroic nanostructures. In: Synth. Inorg. Nanomater., Elsevier, 2018: pp. 185–211. https://doi.org/10.1016/B978-0-08-101975-7.00008-7

  7. L. Rifai, F. Fattouh, K. Habanjar, N. Yaacoub, R. Awad, Exchange spring behaviour in BaFe12O19/CoFe2O4 magnetic nanocomposites. J. Alloys Compd. 868, 159072 (2021). https://doi.org/10.1016/j.jallcom.2021.159072

    Article  CAS  Google Scholar 

  8. M. Kumar, S. Shankar, G.D. Dwivedi, A. Anshul, O.P. Thakur, A.K. Ghosh, Magneto-dielectric coupling and transport properties of the ferromagnetic-BaTiO3 composites. Appl. Phys. Lett. 106, 072903 (2015). https://doi.org/10.1063/1.4909553

    Article  CAS  Google Scholar 

  9. S. Shankar, O.P. Thakur, M. Jayasimhadri, Impedance spectroscopy and conduction behavior in CoFe2O4-BaTiO3 composites. J. Electron. Mater. 49, 472–484 (2020). https://doi.org/10.1007/s11664-019-07700-x

    Article  CAS  Google Scholar 

  10. R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018). https://doi.org/10.1016/j.materresbull.2017.08.006

    Article  CAS  Google Scholar 

  11. G.A. Lone, M. Ikram, Investigating the s and dielectric properties of CoFe2−xNixO4 spinel ferrite. J. Alloys Compd. 908 (2022). https://doi.org/10.1016/j.jallcom.2022.164589

  12. K. Hedayati, S. Azarakhsh, D. Ghanbari, Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method. J. Nanostruct. 6, 127–131 (2016). https://doi.org/10.7508/jns.2016.02.004

    Article  CAS  Google Scholar 

  13. G. Channagoudra, A.K. Saw, K. Dey, D. Xavier, R. Venkatesh, V. Subramanian, D.K. Shukla, V. Dayal, Substantial magnetoelectric response in 2/3[Pb(Mg1/3Nb2/3)O3]−1/3[PbTiO3]-CoFe2O4 composites. J. Alloys Compd. 863 (2021). https://doi.org/10.1016/j.jallcom.2020.158504

  14. A.N. Arifiadi, K.T. Kim, I.Y. Khairani, C.B. Park, K.H. Kim, S.K. Kim, Synthesis and multiferroic properties of high-purity CoFe2O4–BiFeO3 nanocomposites. J. Alloys Compd. 867, 159008 (2021). https://doi.org/10.1016/j.jallcom.2021.159008

    Article  CAS  Google Scholar 

  15. K. Navin, R. Kurchania, Structural, magnetic and electrochemical properties of LSMO-ZnO core-shell nanostructure. Mater. Chem. Phys. 234, 25–31 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.083

    Article  CAS  Google Scholar 

  16. A. Rostamnejadi, H. Salamati, P. Kameli, H. Ahmadvand, Superparamagnetic behavior of La0.67Sr0.33MnO3 nanoparticles prepared via sol–gel method. J. Magn. Magn. Mater. 321, 3126–3131 (2009). https://doi.org/10.1016/j.jmmm.2009.05.035

    Article  CAS  Google Scholar 

  17. A. Rostamnejadi, H. Salamati, P. Kameli, Magnetic properties of interacting La0.67Sr0.33MnO3 nanoparticles. J. Supercond. Nov. Magn. 25, 1123–1132 (2012). https://doi.org/10.1007/s10948-011-1378-z

    Article  CAS  Google Scholar 

  18. M. Saleem, D. Varshney, Structural, thermal, and transport properties of La 0.67 Sr 0.33 MnO 3 nanoparticles synthesized via the sol–gel auto-combustion technique. RSC Adv. 8, 1600–1609 (2018). https://doi.org/10.1039/C7RA09883A

    Article  CAS  Google Scholar 

  19. Y. Shlapa, S. Solopan, A. Belous, A. Tovstolytkin, Effect of synthesis method of La1 − xSrxMnO3 manganite nanoparticles on their properties. Nanoscale Res. Lett. 13, 13 (2018). https://doi.org/10.1186/s11671-017-2431-z

    Article  CAS  Google Scholar 

  20. C. Artale, S. Fermepin, M. Forti, M. Latino, M. Quintero, L. Granja, J. Sacanell, G. Polla, P. Levy, Electric and magnetic properties of PMMA/manganite composites. Phys. B Condens. Matter. 404, 2760–2762 (2009). https://doi.org/10.1016/j.physb.2009.06.081

    Article  CAS  Google Scholar 

  21. U.N. Gupta, H. Muthurajan, H.H. Kumar, N. Koteswara Rao, S.P. Gokhale, V. Ravi, Synthesis of LSMO at low temperature by novel hydroxide precursor technique. Mater. Lett. 62, 527–529 (2008). https://doi.org/10.1016/j.matlet.2007.05.077

  22. R. Jena, K. Chandrakanta, P. Pal, M.F. Abdullah, A.K. Singh, Observation of magnetodielectric properties in BTFO-LSMO composites synthesized via sol-gel precursor hybrid technique. Mater. Today Proc. 50, 837–841 (2022). https://doi.org/10.1016/j.matpr.2021.06.062

    Article  CAS  Google Scholar 

  23. S. Majumdar, S. Van Dijken, Pulsed laser deposition of La 1–x Sr x MnO 3: thin-film properties and spintronic applications. J. Phys. D. Appl. Phys. 47, 034010 (2014). https://doi.org/10.1088/0022-3727/47/3/034010

    Article  CAS  Google Scholar 

  24. I.T. Gomes, A.M. Pereira, J.P. Araújo, A.M.L. Lopes, M.E. Braga, B.G. Almeida, La 2/3 Sr 1/3 MnO 3 thin films deposited by laser ablation on lithium niobate substrates. J. Phys. Conf. Ser. 200, 052007 (2010). https://doi.org/10.1088/1742-6596/200/5/052007

    Article  CAS  Google Scholar 

  25. S. Saini, J. Shah, R.K. Kotnala, K.L. Yadav, Nickel substituted oxygen deficient nanoporous lithium ferrite based green energy device hydroelectric cell. J. Alloys Compd. 827, 154334 (2020). https://doi.org/10.1016/j.jallcom.2020.154334

    Article  CAS  Google Scholar 

  26. R.K. Kotnala, R. Gupta, A. Shukla, S. Jain, A. Gaur, J. Shah, Metal oxide based hydroelectric cell for electricity generation by water molecule dissociation without electrolyte/acid. J. Phys. Chem. C. 122, 18841–18849 (2018). https://doi.org/10.1021/acs.jpcc.8b04999

    Article  CAS  Google Scholar 

  27. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.-M. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  Google Scholar 

  28. C. Han, H. Wang, Z. Wang, X. Ou, Y. Tang, Solvation structure modulation of high-voltage electrolyte for high-performance K-based dual-graphite battery. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300917

    Article  Google Scholar 

  29. X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  30. S.N. Tambe, S.G. Chavan, Y.D. Kolekar, D.J. Salunkhe, Structural, dielectric and magnetoelectric properties of (BSPT–LSMO) composites. J. Mater. Sci. Mater. Electron. 28, 18535–18541 (2017). https://doi.org/10.1007/s10854-017-7801-x

    Article  CAS  Google Scholar 

  31. J. Guo, D. Wang, Y. Han, B. He, N. Zhang, P. Zhang, C. Shi, Y. Chen, M. Ren, Q. Wang, H. Fang, J. Wang, W. Lü, S. Yan, Electronic reconstruction induced inverted hysteresis loop in La0.67Sr0.33MnO3/Pb(Zr0.52Ti0.48)O3 superlattices. J. Alloys Compd. 910, 164928 (2022). https://doi.org/10.1016/j.jallcom.2022.164928

    Article  CAS  Google Scholar 

  32. K. Navin, R. Kurchania, Structural, magnetic and transport properties of the La0.7Sr0.3MnO3-ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018). https://doi.org/10.1016/j.jmmm.2017.06.035

    Article  CAS  Google Scholar 

  33. R. Tursun, Y. Su, J. Zhang, R. Yakefu, Structural, magnetic, and microwave absorbing properties of NiTiO3/CoFe2O4 composites. J. Alloys Compd. 911, 165051 (2022). https://doi.org/10.1016/j.jallcom.2022.165051

    Article  CAS  Google Scholar 

  34. G.H. Rather, M. ud D. Rather, N. Nazir, A. Ikram, M. Ikram, B. Want, Particulate multiferroic Ba0.99Tb0.02Ti0.99O3 – CoFe1.8Mn0.2O4 composites: improved dielectric, ferroelectric and magneto-dielectric properties. J. Alloys Compd. 887 (2021). https://doi.org/10.1016/j.jallcom.2021.161446.

  35. K.C. Verma, D. Singh, S. Kumar, R.K. Kotnala, Multiferroic effects in MFe2O4/BaTiO3(M = Mn Co, Ni, Zn) nanocomposites. J. Alloys Compd. 709, 344–355 (2017). https://doi.org/10.1016/j.jallcom.2017.03.145

    Article  CAS  Google Scholar 

  36. G.D. Dwivedi, M. Kumar, P. Shahi, A. Barman, S. Chatterjee, A.K. Ghosh, Low temperature magnetic and transport properties of LSMO-PZT nanocomposites. RSC Adv. 5, 30748–30757 (2015). https://doi.org/10.1039/c5ra04101e

    Article  CAS  Google Scholar 

  37. S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane, S. Li, Ferrites obtained by sol-gel method. In: Handb. Sol-Gel Sci. Technol., Springer International Publishing, Cham, 2018: pp. 695–735. https://doi.org/10.1007/978-3-319-32101-1_125

  38. S.E. Shirsath, C. Cazorla, T. Lu, L. Zhang, Y.Y. Tay, X. Lou, Y. Liu, S. Li, D. Wang, Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin-film bilayers. Nano Lett. 20, 1262–1271 (2020). https://doi.org/10.1021/acs.nanolett.9b04727

    Article  CAS  Google Scholar 

  39. H. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang, L. Mei, Z. Wu, W. Wei, X. Ji, B. Qu, L. Chen, A multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv. Funct. Mater. 32, 2205600 (2022). https://doi.org/10.1002/adfm.202205600

    Article  CAS  Google Scholar 

  40. M. Fu, W. Chen, Y. Lei, H. Yu, Y. Lin, M. Terrones, Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 35 (2023). https://doi.org/10.1002/adma.202300940

  41. M. Kumar, S. Shankar, O.P. Thakur, A.K. Ghosh, Effects of co-substitution on dielectric, magnetic properties and magnetoelectric coupling in nano CoFe2O4. Mater. Lett. 143, 241–243 (2015). https://doi.org/10.1016/j.matlet.2014.12.101

    Article  CAS  Google Scholar 

  42. K. Zarezadeh, S. Sheibani, A. Ataie, Photocatalytic and antibacterial characteristics of decorated polyester textile with ceramic nanoparticles of cobalt ferrite. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.134

    Article  Google Scholar 

  43. S. Shankar, I. Maurya, A. Raj, S. Singh, O.P. Thakur, M. Jayasimhadri, Dielectric and tunable ferroelectric properties in BiFeO3–BiCoO3–BaTiO3 ternary compound. Appl. Phys. A. 126, 686 (2020). https://doi.org/10.1007/s00339-020-03872-0

    Article  CAS  Google Scholar 

  44. S. Shankar, M. Kumar, A.K. Ghosh, O.P. Thakur, M. Jayasimhadri, Anomalous ferroelectricity and strong magnetoelectric coupling in CoFe2O4-ferroelectric composites. J. Alloys Compd. 779, 918–925 (2019). https://doi.org/10.1016/j.jallcom.2018.11.252

    Article  CAS  Google Scholar 

  45. A.S. Priya, D. Geetha, N. Kavitha, Evaluation of structural and dielectric properties of Al, Ce co-doped cobalt ferrites. Mater. Res. Express. 5, 066109 (2018). https://doi.org/10.1088/2053-1591/aacd1e

    Article  CAS  Google Scholar 

  46. H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir, A. Stamboulis, Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles. Appl. Phys. A. 124, 820 (2018). https://doi.org/10.1007/s00339-018-2246-5

    Article  CAS  Google Scholar 

  47. V.R. Bhagwat, A.V. Humbe, S.D. More, K.M. Jadhav, Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater. Sci. Eng. B. 248, 114388 (2019). https://doi.org/10.1016/j.mseb.2019.114388

    Article  CAS  Google Scholar 

  48. S. Shankar, O.P. Thakur, M. Jayasimhadri, Structural, multiferroic, and magnetoelectric properties of (1–x)Bi0.85La0.15FeO3–xBaTiO3 composite ceramics. J. Mater. Sci. Mater. Electron. 31, 12226–12237 (2020). https://doi.org/10.1007/s10854-020-03768-y

    Article  CAS  Google Scholar 

  49. S.E. Shirsath, R.H. Kadam, M.L. Mane, A. Ghasemi, Y. Yasukawa, X. Liu, A. Morisako, Permeability and magnetic interactions in Co2+ substituted Li0.5Fe2.5O4 alloys. J. Alloys Compd. 575, 145–151 (2013). https://doi.org/10.1016/j.jallcom.2013.04.058

    Article  CAS  Google Scholar 

  50. W. Xia, L. Li, H. Wu, P. Xue, X. Zhu, Structural, morphological, and magnetic properties of sol-gel derived La0.7Ca0.3MnO3 manganite nanoparticles. Ceram. Int. 43, 3274–3283 (2017). https://doi.org/10.1016/j.ceramint.2016.11.160

    Article  CAS  Google Scholar 

  51. S. Bharadwaj, A. Tirupathi, N. Pavan Kumar, S. Pola, Y. Kalyana Lakshmi, Study of magnetic and magnetoresistance behaviour of La Sr MnO CoFe O 0.67 0.33 3 − 2 4 composites. J. Magn. Magn. Mater. 513, 167058 (2020). https://doi.org/10.1016/j.jmmm.2020.167058

  52. C.H. Chen, S. Kodat, M.H. Walmer, S.-F. Cheng, M.A. Willard, V.G. Harris, Effects of grain size and morphology on the coercivity of Sm2(Co1−xFex)17 based powders and spin cast ribbons. J. Appl. Phys. 93, 7966–7968 (2003). https://doi.org/10.1063/1.1558272

    Article  CAS  Google Scholar 

  53. M. Easwari, A. Kalaivani, A.C. Joy, S. Jesurani, Synthesis and properties of cobalt ferrite magnetic nanoparticles. ReTeLL. 14(1) (Aug 2014)

  54. A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Optical, electrical and magnetic properties of lanthanum strontium manganite La 1–x Sr x MnO 3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 19, 6878–6886 (2017). https://doi.org/10.1039/C6CP07333F

    Article  CAS  Google Scholar 

  55. M. Gupta, W. Khan, P. Yadav, R.K. Kotnala, A. Azam, A.H. Naqvi, Synthesis and evolution of magnetic properties of Ni doped La 2/3 Sr 1/3 Mn 1–x Ni x O 3 nanoparticles. J. Appl. Phys. 111, 093706 (2012). https://doi.org/10.1063/1.4707757

    Article  CAS  Google Scholar 

  56. F. Deganello, G. Marcì, G. Deganello, Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Eur. Ceram. Soc. 29, 439–450 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.012

    Article  CAS  Google Scholar 

  57. A. Garbout, I. Ben Taazayet-Belgacem, M. Férid, Structural, FT-IR, XRD and Raman scattering of new rare-earth-titanate pyrochlore-type oxides LnEuTi2O7 (Ln=Gd, Dy). J. Alloys Compd. 573, 43–52 (2013). https://doi.org/10.1016/j.jallcom.2013.03.279

  58. K.P. Shinde, N.D. Thorat, S.S. Pawar, S.H. Pawar, Combustion synthesis and characterization of perovskite La0.9Sr0.1MnO3. Mater. Chem. Phys. 134, 881–885 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.085

    Article  CAS  Google Scholar 

  59. S. Shankar, O.P. Thakur, M. Jayasimhadri, Strong enhancement in structural, dielectric, impedance and magnetoelectric properties of NdMnO3 - BaTiO3 multiferroic composites. Mater. Chem. Phys. 270, 124856 (2021). https://doi.org/10.1016/j.matchemphys.2021.124856

    Article  CAS  Google Scholar 

  60. M. Kumar, S. Shankar, Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions. Phys. Lett. A. 381, 379–386 (2017). https://doi.org/10.1016/j.physleta.2016.11.009

  61. P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472–477 (2008). https://doi.org/10.1016/j.ssc.2008.04.003

    Article  CAS  Google Scholar 

  62. S. Shankar, O.P. Thakur, M. Jayasimhadri, Significant improvements in dielectric, impedance, multiferroic and magnetoelectric properties of (1–x)Co0.5Ni0.5Fe2O4−xBaTiO3 bulk composites (x = 0, 0.10 and 0.20). J. Mater. Sci. Mater. Electron. 32, 16706–16714 (2021). https://doi.org/10.1007/s10854-021-06227-4

    Article  CAS  Google Scholar 

  63. S. Shankar, O.P. Thakur, M. Jayasimhadri, Conductivity behavior and impedance studies in BaTiO3–CoFe2O4 magnetoelectric composites. Mater. Chem. Phys. 234, 110–121 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.095

    Article  CAS  Google Scholar 

  64. Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song, The contribution of doped-Al to the colossal permittivity properties of Al x Nb 0.03 Ti 0.97–x O 2 rutile ceramics. J. Mater. Chem. C. 4, 6798–6805 (2016). https://doi.org/10.1039/C6TC00742B

    Article  CAS  Google Scholar 

  65. J. Lv, Y. Zhang, Z. Lv, X. Huang, Z. Wang, X. Zhu, B. Wei, Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability. Electrochim. Acta. 222, 1585–1591 (2016). https://doi.org/10.1016/j.electacta.2016.11.144

    Article  CAS  Google Scholar 

  66. M. Atif, S. Ahmed, M. Nadeem, M.N. Khan, Complex dielectric and impedance analysis in a relaxor type ferroelectric/ferrimagnetic magnetoelectric (0.5)PbZr0.52Ti0.48O3+(0.5)CoFe2O4 composite. J. Alloys Compd. 735, 880–889 (2018). https://doi.org/10.1016/j.jallcom.2017.11.168

    Article  CAS  Google Scholar 

  67. M.T. Rahman, C.V. Ramana, Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116, 164108 (2014). https://doi.org/10.1063/1.4896945

    Article  CAS  Google Scholar 

  68. Y. Jia, J. Ma, X. Xu, Z. Han, Z. Wu, M. Ismail, N.O. Haugen, L. Wang, S. Yu, Z. Xu, S. Li, J. Zou, H. Luo, Abnormal magnetocapacitance of multiferroic perovskite oxide Pb(Fe1/2Nb1/2)1-xTixO3 (x=0.48) crystal. J. Alloys Compd. 743, 597–602 (2018). https://doi.org/10.1016/j.jallcom.2018.02.025

    Article  CAS  Google Scholar 

  69. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3-0.1BaTiO3. Phys. Rev. Lett. 101, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.247602

    Article  CAS  Google Scholar 

  70. R.F. Mamin, V.V. Kabanov, Giant dielectric permittivity and magneto-capacitance effects in low doped manganites. New J. Phys. 16, 073011 (2014). https://doi.org/10.1088/1367-2630/16/7/073011

    Article  CAS  Google Scholar 

  71. A. Gaur, A. Kumar, P. Kumar, R. Agrawal, J. Shah, R.K. Kotnala, Fabrication of a SnO 2 -based hydroelectric cell for green energy production. ACS Omega. 5, 10240–10246 (2020). https://doi.org/10.1021/acsomega.9b03309

    Article  CAS  Google Scholar 

  72. J. Shah, R. Kumar Kotnala, Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte. J. Phys. Chem. Solids. 108, 15–20 (2017). https://doi.org/10.1016/j.jpcs.2017.04.007

  73. L. Wang, Q. Lu, X. Lv, Y. Su, Magnetoelectric coupling property of 0–3 type CoFe2O4-BaTiO3 nanocomposites. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.01.238

    Article  Google Scholar 

  74. K. Narasimharao, T.T. Ali, B.M. Abu-Zied, S.Y. Alfaifi, Combustion synthesis of nanocrystalline porous CoFexAl2-xO4 spinels: structural, textural, magnetic, and electrical properties. Ceram. Int. 49, 13238–13248 (2023). https://doi.org/10.1016/j.ceramint.2022.12.204

    Article  CAS  Google Scholar 

  75. E.R. Kumar, R. Jayaprakash, Effect of combustion rate and annealing temperature on structural and magnetic properties of manganese substituted nickel and zinc ferrites. J. Magn. Magn. Mater. 348, 93–100 (2013). https://doi.org/10.1016/j.jmmm.2013.07.042

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by Research Scheme no. 03(1427)/18/EMR-II, CSIR, New Delhi, India, and supported by UGC-DAE CSR-Indore, India, for characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

C.C., formal analysis, investigation and writing, original draft. S.S., conceptualization; writing, review and editing; assessment; and supervision. S.G., writing, review and editing. R.K.K., writing, review and editing. A.P.S., conceptualization; writing, review and editing; assessment; and supervision.

Corresponding authors

Correspondence to S. Shankar or A. P. Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 274 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitralekha, Gaurav, S., Kotnala, R.K. et al. Dielectric, Impedance, Magnetic and Magnetocapacitance Investigations in ferrite–manganite nanocomposites for Hydroelectric Cell applications. emergent mater. (2024). https://doi.org/10.1007/s42247-023-00621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-023-00621-w

Keywords

Navigation