Skip to main content
Log in

Electromagnetic interference shielding behaviour of stacked aloe vera and silk fibre–reinforced high-content copper slag powder epoxy sandwich composite

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This study explains how the addition of a metallic filler particle along with various stacking ordered electromagnetic wave–suppressing fabrics influences the total electromagnetic interference shielding effectiveness at high frequency bands. The primary objective of this study was to develop a rigid non-flexible electromagnetic interference (EMI) shielding material for use in protecting electronic devices from electromagnetic interference. The fibre and silk fabric were stacked in resin as two different forms and copper slag particles are added in it. The composites were developed using the hand layup process and they were evaluated using the American Society for Testing and Materials (ASTM) standards. The conclusion states that the fibres staked in the aloe vera/silk/silk/aloe vera (RSA) sequence were found to have higher dielectric values. A highest dielectric constant of 5.68 was noted for the RSA2 composite. Similarly, the addition of silk fabric along with copper slag as A/S/S/A format found produced a highest EMI shielding of −54.8 dB at 20-GHz frequency. Moreover, the composite designation RSA2 produced improved mechanical properties and hardness. These EMI shielding–improved mechanically toughened epoxy-based composites could be used in defence, telecommunication sector, and radar and radome applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Wang et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon. 177, 377–402 (2021)

    Article  CAS  Google Scholar 

  2. Y.J. Tan et al., Compos.-A: Appl. Sci. Manuf. 137, 106008 (2020)

    Article  CAS  Google Scholar 

  3. H. Alshahrani, V.R. Arun, Prakash., Ind. Crops. Prod. 191, 115967 (2023)

    Article  CAS  Google Scholar 

  4. L. Lyu et al., Eng. Sci. 2(59), 26–42 (2018). https://doi.org/10.30919/es8d615

    Article  Google Scholar 

  5. T. Merizgui et al., Journal of Magnetism and Magnetic Materials 536, 168118 (2021)

    Article  CAS  Google Scholar 

  6. X.H. Tang et al., Compos. B. Eng. 196, 108121 (2020)

    Article  CAS  Google Scholar 

  7. Y. Zhang, J. Gu, Nano-Micro. Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3

    Article  CAS  Google Scholar 

  8. Y. Yao, S. Jin, H. Zou, et al., J. Mater. Sci. 56, 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x

    Article  CAS  Google Scholar 

  9. C. Liang, Z. Gu, Y. Zhang, et al., Nano-Micro. Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2

    Article  CAS  Google Scholar 

  10. V. Antony Vincent et al., Trans. Electr. Electron. Mater., 1–9 (2021)

  11. M.J. Prabhahar et al., Mater. Res. Express. 7(1), 016106

  12. A. Vincent et al., Colloids. Interface. Sci. Commun. 24, 89–92

  13. T.C. Phiri et al., Miner. Eng. 172, 107150

  14. H. Tian et al., Resour. Conserv. Recycl. 168, 105366

  15. T.C. Phiri et al., Miner. Eng. 180, 107474

  16. R. Babu, A. Bonige, B. Rao, Biomass. Convers. Biorefin., 1–7 (2023)

  17. G. Logesh et al., Ceram. Int. 49(2), 1922–1931 (2023)

    Article  CAS  Google Scholar 

  18. Y. Fan, REWAS 2019: Manufacturing the Circular Materials Economy (Springer International Publishing, 2019), pp. 229–233

    Book  Google Scholar 

  19. M. Fan et al., Chem. Eng. J. 441, 136103 (2022)

    Article  CAS  Google Scholar 

  20. G. Yin et al., Colloids Surf. A: Physicochem. Eng. Asp 601, 125047 (2020)

    Article  CAS  Google Scholar 

  21. D. Li et al., Compos.-A: Appl. Sci. Manuf. 141, 106237 (2021)

    Article  CAS  Google Scholar 

  22. B. Yan et al., Int. J. Biol. Macromol. 226, 1141–1153 (2023)

    Article  CAS  Google Scholar 

  23. H.Y. Wang et al., Int. J. Biol. Macromol. 143, 594–601

  24. Liu et al., Adv. Funct. Mater. 29(44), 1905197 (2019)

    Article  CAS  Google Scholar 

  25. Z. Xu et al., Compos.-A: Appl. Sci. Manuf. 119, 111–118 (2019)

    Article  CAS  Google Scholar 

  26. Moonlek et al., Polym. Compos. 41(10), 3996–4009 (2020)

    Article  CAS  Google Scholar 

  27. V.A. Prakash, R. Viswanthan, Compos.-A: Appl. Sci. Manuf. 118, 317–326 (2019)

    Article  Google Scholar 

  28. J. Ben Samuel et al., Silicon. 13(6), 1703–1712 (2021)

    Article  CAS  Google Scholar 

  29. V.R. Arun Prakash et al., Biomass. Convers. Biorefin. 12(12), 5451–5461 (2022)

    Article  CAS  Google Scholar 

  30. H. Alshahrani, V.A. Prakash, Biomass. Convers. Biorefin., 1–9 (2022)

  31. A. Rajadurai, Appl. Surf. Sci. 384, 99–106 (2016)

    Article  Google Scholar 

  32. H. Alshahrani et al., J. Ind. Text. 52, 15280837221137382

  33. V.A. Prakash, A. Rajadurai, Digest J. Nanomater. Biostruct. 11(2), 373–380 (2016)

    Google Scholar 

  34. L. Sun et al., Adv. Funct. Mater. 31(35), 2100280 (2021)

    Article  CAS  Google Scholar 

  35. P. Xie et al., Adv. Compos. Hybrid. Mater. 5(2), 679–695 (2022)

    Article  Google Scholar 

  36. Wang, Y., et al, Appl. Math. Model., 101, 239-258.

  37. V. Rathi, V. Panwar, IEEE Trans. Electromagn. Compat. 60(6), 1795–1801 (2018)

    Article  Google Scholar 

  38. J. Jyoti, A.K. Arya, Polym. Test. 91, 106839 (2020)

    Article  CAS  Google Scholar 

  39. K.M. Batoo et al., Ceram. Int. 48(3), 3328–3343 (2022)

    Article  CAS  Google Scholar 

  40. V.R. Arun Prakash, A. Rajadurai, Appl. Phys. A 122, 1–9 (2016)

    Article  CAS  Google Scholar 

  41. D. Jayabalakrishnan et al., Silicon. 13(8), 2509–2517 (2021)

    Article  CAS  Google Scholar 

  42. G. Suganya et al., Biomass. Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02787-5

  43. M. Bourchak et al., J. Vinyl Addit. Technol. (2023). https://doi.org/10.1002/vnl.21990

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed.

Corresponding author

Correspondence to Bonige Ramesh Babu.

Ethics declarations

Code of ethics

NA.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh Babu, B., Rao, B. Electromagnetic interference shielding behaviour of stacked aloe vera and silk fibre–reinforced high-content copper slag powder epoxy sandwich composite. emergent mater. 6, 1363–1370 (2023). https://doi.org/10.1007/s42247-023-00515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00515-x

Keywords

Navigation