Skip to main content

Advertisement

Log in

Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The environmental changing and the innovative production methods have made advanced composite materials essential for the modern societies. Due to their unique properties, such multimaterial systems have found use in a variety of contemporary contexts. In this work, the implementations of composite materials in automotive, aerospace, marine, sport, defense, structural, and building applications have been debated and explored systematically. Composite materials have been shown to be superior to traditional materials in a number of ways, such as their ability to reduce system weight, which leads to significant energy savings and enhanced performance in a number of different contexts. Also taken into account was the feasibility of mass-producing composite material systems meeting the needs of a variety of designs with varying degrees of complexity in order to allow for extensive leeway in the creation of new shapes, while keeping the number of individual parts to a minimum. Moreover, there is the option to pick and choose the components in order to tweak them until they have the desired properties and functionality. Thus, this work demonstrates the advantages of adopting composite materials in a variety of industries to improve designers’ and decision makers’ comprehension of the characteristic-performance scheme in the field of composite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Murugesan, M. Sajjad, D.W. Jung, Hybrid machine learning optimization approach to predict hot deformation behavior of medium carbon steel material. Metals 9, 1315 (2019)

    CAS  Google Scholar 

  2. R. Vijay, A. Vinod, D.L. Singaravelu, M. Sanjay, S. Siengchin, Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass-a potential reinforcement for lightweight polymeric applications. Int. J. Light. Mater. Manuf. 4, 43–49 (2021)

    CAS  Google Scholar 

  3. H.R. Maleki, B. Abazadeh, Y. Arao, M. Kubouchi, Selection of an appropriate non-destructive testing method for evaluating drilling-induced delamination in natural fiber composites. NDT E Int. 126, 102567 (2022)

    Google Scholar 

  4. A. M. Ismail, F. M. AL-Oqla, M. Risby, S. Sapuan, On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review. Carbon Lett. 32, 727–740 (2022)

  5. M.M. Rababah, F.M. AL-Oqla, M. Wasif, Application of analytical hierarchy process for the determination of green polymeric-based composite manufacturing process. Int. J. Interact. Design Manuf. (IJIDeM). 16, 943–954 (2022)

    Google Scholar 

  6. M.T. Hayajneh, F.M. AL-Oqla, M. Mu’ayyad, Hybrid green organic/inorganic filler polypropylene composites: morphological study and mechanical performance investigations. e-Polym. 21, 710–721 (2021)

    CAS  Google Scholar 

  7. M. Hayajneh, F. M. AL-Oqla, A. Aldhirat, Physical and mechanical inherent characteristic investigations of various Jordanian natural fiber species to reveal their potential for green biomaterials. J. Nat. Fibers. 19, 7199–7212 (2022)

  8. M. M. Rababah, F. M. AL-Oqla, Biopolymer Composites and Sustainability, in Advanced Processing, Properties, and Applications of Starch and other Bio-base Polymers, ed. (Elsevier, Cambridge USA, 2020), p 1–10

  9. M. Khairul, S.M. Sapuan, F.M. AL-Oqla, E. Zainudin, Experimental investigation and numerical prediction for the fatigue life durability of austenitic stainless steel at room temperature. Eng. Solid Mech. 7, 121–130 (2019)

    Google Scholar 

  10. G.S. Mann, L.P. Singh, P. Kumar, S. Singh, Green composites: a review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 33, 1145–1171 (2020)

    CAS  Google Scholar 

  11. A. Vinod, T.Y. Gowda, R. Vijay, M. Sanjay, M.K. Gupta, M. Jamil, V. Kushvaha, S. Siengchin, Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J. Cleaner Prod. 294, 126337 (2021)

    CAS  Google Scholar 

  12. F.M. AL-Oqla, M.T. Hayajneh, A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int. J. Sustain. Eng. 14, 1043–1048 (2021)

    Google Scholar 

  13. F. M. AL-Oqla and R. Al-Jarrah, A novel adaptive neuro-fuzzy inference system model to predict the intrinsic mechanical properties of various cellulosic fibers for better green composites. Cellulose. 28, 8541–8552 (2021)

  14. N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015)

    Google Scholar 

  15. M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52, 797–809 (2013)

    Google Scholar 

  16. K.F. Hasan, P.G. Horvath, T. Alpár, Thermomechanical behavior of methylene diphenyl diisocyanate-bonded flax/glass woven fabric reinforced laminated composites. ACS Omega 6, 6124–6133 (2021)

    CAS  Google Scholar 

  17. S. Rajesh, G. Suresh, R.C. Mohan, A review on material selection and fabrication of composite solid rocket motor (SRM) casing. Int. J. Mech. Solids 9, 125–138 (2017)

    Google Scholar 

  18. F.M. AL-Oqla, M.T. Hayajneh, Hybrid material performance assessment for rocket propulsion. J. Mech. Behav. Mater. 31, 160–169 (2022)

    Google Scholar 

  19. O. A. El Seoud, K. Jedvert, M. Kostag, S. Possidonio, Cellulose, chitin and silk: the cornerstones of green composites. Emergent Mater. 5, 785–810 (2022)

  20. A. K. Rana, S. Guleria, V. K. Gupta, V. K. Thakur, Cellulosic pine needles-based biorefinery for a circular bioeconomy. Bioresour. Technol. Volume. 367, 128255 (2023)

  21. O. Fares, F. AL-Oqla, M. Hayajneh, Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. J. Ind. Text. 51, 7732S–7754S (2022)

  22. F. M. AL-Oqla, M. T. Hayajneh, M. A. M. Al-Shrida, Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose. 29, 3293–3309 (2022)

  23. D. Zielińska, T. Rydzkowski, V.K. Thakur, S. Borysiak, Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Ind. Crops Prod. 161, 113188 (2021)

    Google Scholar 

  24. F. M. AL-Oqla, S. Sapuan, M. Jawaid, Integrated mechanical-economic–environmental quality of performance for natural fibers for polymeric-based composite materials. J. Nat. Fibers. 13, 651–659 (2016)

  25. S. Sathish, N. Karthi, L. Prabhu, S. Gokulkumar, D. Balaji, N. Vigneshkumar, T.A. Farhan, A. AkilKumar, V. Dinesh, A review of natural fiber composites: extraction methods, chemical treatments and applications. Mater. Today: Proc. 45, 8017–8023 (2021)

    CAS  Google Scholar 

  26. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, F.M. AL-Oqla, Development of photovoltaic module with fabricated and evaluated novel backsheet-based biocomposite materials. Materials 12, 3007 (2019)

    CAS  Google Scholar 

  27. L. Zhao, X. Hu, F. Zi, Y. Liu, D. Hu, P. Li, H. Cheng, Preparation and adsorption properties of Ni (ii) ion-imprinted polymers based on synthesized novel functional monomer. e-Polymers 21, 590–605 (2021)

    CAS  Google Scholar 

  28. A. Szczesio-Wlodarczyk, M. Domarecka, K. Kopacz, J. Sokolowski, K. Bociong, An evaluation of the properties of urethane dimethacrylate-based dental resins. Materials 14, 2727 (2021)

    CAS  Google Scholar 

  29. S.S. Siwal, Q. Zhang, N. Devi, A.K. Saini, V. Saini, B. Pareek, S. Gaidukovs, V.K. Thakur, Recovery processes of sustainable energy using different biomass and wastes. Renew. Sustain. Energy Rev. 150, 111483 (2021)

    CAS  Google Scholar 

  30. F.M. Al-Oqla, Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. J. Polym. Environ. 29, 892–899 (2021)

    CAS  Google Scholar 

  31. O. O. Fares, F. M. AL-Oqla, in Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, ed. (Elsevier, Cambridge USA, 2020), p 173–184 

  32. F.M. AL-Oqla, A.A. Omar, O. Fares, Evaluating sustainable energy harvesting systems for human implantable sensors. Int. J. Electron. 105, 504–517 (2018)

    Google Scholar 

  33. Y. El-Shekeil, F. AL-Oqla, S. Sapuan, Performance tendency and morphological investigations of lignocellulosic tea/polyurethane bio-composite materials. Polymer Bulletin 77, 3907–3920 (2020)

    CAS  Google Scholar 

  34. F.M. AL-Oqla, Y. El-Shekeil, Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. J. Cleaner Prod. 222, 865–870 (2019)

    CAS  Google Scholar 

  35. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, F.M. AL-Oqla, Lightweight and durable PVDF–SSPF composites for photovoltaics backsheet applications: thermal, optical and technical properties. Materials 12, 2104 (2019)

    CAS  Google Scholar 

  36. M. H. Alaaeddin, S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, Faris M. AL-Oqla, Properties and common industrial applications of polyvinyl fluoride (PVF) and polyvinylidene fluoride (PVDF). In IOP Conference Series: Mater. Sci. Eng. 409(1), 012021 (2018)

  37. F. M. AL-Oqla, S. Sapuan, Advanced processing, properties, and applications of starch and other bio-based polymers. ed. (Elsevier, Cambridge USA, 2020)

  38. F. M. AL-Oqla, Biocomposites in advanced biomedical and electronic systems applications, in Composites in Biomedical Applications, ed. (CRC Press, Boca Raton, FL USA 2020), p 49–70

  39. A. M. Al-Ghraibah, M. Al-Qudah, F. M. AL-Oqla, Medical implementations of biopolymers. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, ed. (Elsevier, Boca Raton, FL USA, 2020), p 157–171

  40. F. M. AL-Oqla, M. T. Hayajneh, O. Fares, Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. J. Cleaner Prod. 241, 118256 (2019)

  41. F.M. Al-Oqla, Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose 28, 2203–2213 (2021)

    CAS  Google Scholar 

  42. A.M. Jawarneh, F.M. Al-Oqla, A.A. Jadoo, Transient behavior of non-toxic natural and hybrid multi-layer desiccant composite materials for water extraction from atmospheric air. Environ. Sci. Pollut. Res. 28, 45609–45618 (2021)

    CAS  Google Scholar 

  43. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, F.M. Al-Oqla, Photovoltaic applications: status and manufacturing prospects. Renew. Sustain. Energy Rev. 102, 318–332 (2019)

    CAS  Google Scholar 

  44. Z.M. Mucsi, K.F. Hasan, P.G. Horváth, M. Bak, Z. Kóczán, T. Alpár, Semi-dry technology mediated lignocellulosic coconut and energy reed straw reinforced cementitious insulation panels. J. Build. Eng. 57, 104825 (2022)

    Google Scholar 

  45. K.F. Hasan, P.G. Horváth, K. Zsolt, Z. Kóczán, M. Bak, A. Horváth, T. Alpár, Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Compos. Interfaces 29, 503–521 (2022)

    CAS  Google Scholar 

  46. K. F. Hasan, P. G. Horváth, K. Zsolt, T. Alpár, Design and fabrication technology in biocomposite manufacturing, in Value-Added Biocomposites, ed. (CRC Press, Boca Raton, FL USA, 2021), p 157–188

  47. U. Chadha, P. Bhardwaj, S. K. Selvaraj, K. Kumari, T. S. Isaac, M. Panjwani, K. Kulkarni, R. M. Mathew, A. M. Satheesh, A. Pal, Advances in chitosan biopolymer composite materials: from bioengineering, wastewater treatment to agricultural applications. Mater. Res. Express. 9, 052002 (2022)

  48. S.S. Shera, R.M. Banik, Development of tunable silk fibroin/xanthan biopolymeric scaffold for skin tissue engineering using L929 fibroblast cells. J. Bionic Eng. 18, 103–117 (2021)

    Google Scholar 

  49. S.-K. Jun, J.-R. Cha, J.C. Knowles, H.-W. Kim, J.-H. Lee, H.-H. Lee, Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent. Mater. 36, 157–166 (2020)

    CAS  Google Scholar 

  50. T. Alpár, K. F. Hasan, P. G. Horváth, Introduction to biomass and biocomposites, in Value-Added Biocomposites, ed. (CRC Press, Boca Raton, FL, USA, 2021), p 1–33

  51. K. Hasan, P.G. Horváth, M. Bak, D.H.A. Le, Z.M. Mucsi, T. Alpár, Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose 28, 7859–7875 (2021)

    CAS  Google Scholar 

  52. K. Hasan, P.G. Horváth, T. Alpár, Potential fabric-reinforced composites: a comprehensive review. J. Mater. Sci. 56, 14381–14415 (2021)

    CAS  Google Scholar 

  53. C. Xu, Y. Xu, M. Chen, Y. Zhang, J. Li, Q. Gao, S.Q. Shi, Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 390, 124622 (2020)

    CAS  Google Scholar 

  54. N. San Ha, G. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications. Compo. Part B: Eng. 181, 107496 (2020)

  55. S. Noreen, H.N. Bhatti, M. Iqbal, F. Hussain, F.M. Sarim, Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 147, 439–452 (2020)

    CAS  Google Scholar 

  56. M. T. Hayajneh, M. Mu’ayyad, F. M. AL-Oqla, Mechanical, thermal, and tribological characterization of bio-polymeric composites: a comprehensive review. e-Polymers. 22, 641–663 (2022)

  57. F. M. AL-Oqla and M. T. Hayajneh, Stress failure interface of cellulosic composite beam for more reliable industrial design. Int. J. Interact. Design Manuf. (IJIDeM). 16, 1727–1738 (2022)

  58. S. M. BaniHani, F. M. AL-Oqla, M. Hayajneh, S. Mutawe, T. Almomani, A new approach for dynamic crack propagation modeling based on meshless Galerkin method and visibility based criterion. Appl. Math. Model. 107, 1–19 (2022)

  59. V. Mahesh, S. Joladarashi, S.M. Kulkarni, Damage mechanics and energy absorption capabilities of natural fiber reinforced elastomeric based bio composite for sacrificial structural applications. Defence Technol. 17, 161–176 (2021)

    Google Scholar 

  60. K. Hasan, P.G. Horváth, Z. Kóczán, D.H.A. Le, M. Bak, L. Bejó, T. Alpár, Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. J. Polym. Res. 28, 1–16 (2021)

    Google Scholar 

  61. F. M. AL-Oqla, Manufacturing and delamination factor optimization of cellulosic paper/epoxy composites towards proper design for sustainability. Int. J. Interact. Design Manuf. (IJIDeM). 1–9 (2022). https://doi.org/10.1007/s12008-022-00980-4

  62. A. Belaadi, M. Boumaaza, S. Amroune, M. Bourchak, Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. Int. J. Adv. Manuf. Technol. 111, 2073–2094 (2020)

    Google Scholar 

  63. M. Atiq Ur Rehman, Q. Chen, A. Braem, M.S. Shaffer, A.R. Boccaccini, Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. Int. Mater. Rev. 66, 533–562 (2021)

    CAS  Google Scholar 

  64. A. Almagableh, F.M. Al-Oqla, M.A. Omari, Predicting the effect of nano-structural parameters on the elastic properties of carbon nanotube-polymeric based composites. Int. J. Performability Eng. 13, 73 (2017)

    Google Scholar 

  65. N. Nawafleh, F.M. AL-Oqla, Artificial neural network for predicting the mechanical performance of additive manufacturing thermoset carbon fiber composite materials. J. Mech. Behav. Mater. 31, 501–513 (2022)

    Google Scholar 

  66. S. Sapuan, W. Haniffah, F.M. AL-Oqla, Effects of reinforcing elements on the performance of laser transmission welding process in polymer composites: a systematic review. Int. J. Performability Eng. 12, 553 (2016)

    Google Scholar 

  67. W. Guo, Y. Gao, W. Hu, X. Wu, and H. Zhou, Study on the mechanical property of high‐performance silicon carbide fiber. Adv. Eng. Mater. 24, 2101407 (2022)

  68. S.-G. Bae, M. Oh, Y. Lee, S. Kim, Y.-G. Jeong, J.-M. Lee, J. Kim, D.-G. Shin, Fabrication and high-temperature performance evaluation of silicon carbide–hafnium carbide nanocomposite fiber. Ceram. Int. 48, 13295–13303 (2022)

    CAS  Google Scholar 

  69. S. Kane, A. Stanley, L. Sanchez, D. Faucett, S. Choi, Life-limiting aspects of an melt-infiltrated silicon carbide fiber-reinforced silicon carbide matrix ceramic matrix composite in interlaminar shear at elevated temperature. J. Eng. Gas Turbines Power. 144(2), 021006 (2022)

  70. F. M. AL-Oqla, M. H. Alaaeddin, M. E. Hoque, V. K. Thakur, Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review. J. Bionic Eng. 19, 1562–1577 (2022)

  71. L. Cao, J. Wang, Y. Liu, Y. Zhang, B. Liu, Y. Cao, Q. Zhang, Effect of heat transfer channels on thermal conductivity of silicon carbide composites reinforced with pitch-based carbon fibers. J. Eur. Ceram. Soc. 42, 420–431 (2022)

    CAS  Google Scholar 

  72. V. Chauhan, T. Kärki, J. Varis, Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 35, 1169–1209 (2022)

    CAS  Google Scholar 

  73. F.M. AL-Oqla, S. Sapuan, Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. J. Polym. Environ. 26, 1290–1296 (2018)

    CAS  Google Scholar 

  74. B. Rashid, Z. Leman, M. Jawaid, M. R. Ishak, F. M. Al-Oqla, Eco-Friendly Composites for Brake Pads From Agro Waste: A Review, in Reference Module in Materials Science and Materials Engineering, ed. (Elsevier, 2017), p 209–228

  75. F. M. AL-Oqla, M. Rababah, Challenges in design of nanocellulose and its composites for different applications. in Cellulose-Reinforced Nanofibre Composites, ed. (Elsevier, Cambridge USA, 2017), p 113–127

  76. S. Afewerki, R. Alimohammadzadeh, S.H. Osong, C.W. Tai, P. Engstrand, A. Córdova, Sustainable design for the direct fabrication and highly versatile functionalization of nanocelluloses. Global Chall. 1, 1700045 (2017)

    Google Scholar 

  77. F. M. AL-Oqla, M. S. Salit, Material selection of natural fiber composites using other methods, in Materials Selection for Natural Fiber Composites. vol. 1, ed. (Elsevier, Woodhead Publishing, Cambridge USA, 2017), p 235–272

  78. F. M. AL-Oqla, M. S. Salit, Material selection of natural fiber composites using the analytical hierarchy process, in Materials Selection for Natural Fiber Composites. vol. 1, ed. (Elsevier, Woodhead Publishing, Cambridge USA, 2017), p 169–234

  79. X. Yu, X. Hu, W. Cheng, Y. Zhao, Z. Shao, D. Xue, M. Wu, Preparation and evaluation of humic acid–based composite dust suppressant for coal storage and transportation. Environ. Sci. Pollut. Res. 29, 17072–17086 (2022)

    CAS  Google Scholar 

  80. M. Lagel, L. Hai, A. Pizzi, M. Basso, L. Delmotte, S. Abdalla, A. Zahed, F. Al-Marzouki, Automotive brake pads made with a bioresin matrix. Ind. Crops Prod. 85, 372–381 (2016)

    CAS  Google Scholar 

  81. G. Koronis, A. Silva, M. Fontul, Green composites: a review of adequate materials for automotive applications. Compos. Part B, Eng. 44, 120–127 (2013)

    CAS  Google Scholar 

  82. C.J.C. Jabbour, A.B.L. de Sousa Jabbour, K. Govindan, A.A. Teixeira, W.R. de Souza Freitas, Environmental management and operational performance in automotive companies in Brazil: the role of human resource management and lean manufacturing. J. Cleaner Prod. 47, 129–140 (2013)

    Google Scholar 

  83. M.C.A. Teles, G.O. Glória, G.R. Altoé, P. Amoy Netto, F.M. Margem, F.O. Braga, S.N. Monteiro, Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater. Res. 18, 185–192 (2015)

    CAS  Google Scholar 

  84. S. Salifu, D. Desai, O. Ogunbiyi, and K. Mwale, Recent development in the additive manufacturing of polymer-based composites for automotive structures—A review. Int. J. Adv. Manuf. Technol. 119, 6877–6891 (2022)

  85. V. Shah, J. Bhaliya, G.M. Patel, K. Deshmukh, Advances in polymeric nanocomposites for automotive applications: a review. Polym. Adv. Technol. 33, 3023–3048 (2022)

    CAS  Google Scholar 

  86. H. Wu, W. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, J. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater Sci. 111, 100638 (2020)

    CAS  Google Scholar 

  87. S. Wegmann, C. Rytka, M. Diaz-Rodenas, V. Werlen, C. Schneeberger, P. Ermanni, B. Caglar, C. Gomez, V. Michaud, A life cycle analysis of novel lightweight composite processes: reducing the environmental footprint of automotive structures. J. Cleaner Prod. 330, 129808 (2022)

    CAS  Google Scholar 

  88. A.D. Wakekar, S.H. Patil, S. Deshmukh, C.M. Thakar, The review of carbon fiber materials in automotive industry. ECS Trans. 107, 16595 (2022)

    Google Scholar 

  89. K.D. Kumar, M. Shantharaja, N. Kumar, G. Manjunatha, Morphological and mechanical properties of short fibres reinforced hybrid composites for automotive applications. Mater. Today: Proc. 52, 957–962 (2022)

    Google Scholar 

  90. Z. Ranjbar, R. Behnaz, S. Foroughirad, Biopolymers in Automotive Industry, in Biopolymers: Recent Updates, Challenges and Opportunities. (Cham Springer, International Publishing, 2022), pp 271–288

  91. M. Al-Furjan, L. Shan, X. Shen, M. Zarei, M. Hajmohammad, R. Kolahchi, A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced polymer composites. J. Mater. Res. Technol. 19, 2930–2959 (2022)

  92. M. M. Ahamed, L. Natrayan, Dynamic analysis and structural simulation of aluminum composite material based automobile chassis. Mater. Today: Proceed. 62, 2244–2249 (2022)

  93. A. Agarwal, L. Mthembu, Structural analysis and weight optimization of automotive chassis by Latin hypercube sampling using metal matrix composites. Mater. Today: Proc. 60, 2132–2140 (2022)

    Google Scholar 

  94. A. Singh, Z. Gu, X. Hou, Y. Liu, D.J. Hughes, Design optimisation of braided composite beams for lightweight rail structures using machine learning methods. Compos. Struct. 282, 115107 (2022)

    CAS  Google Scholar 

  95. E. Kozák, Gégény, Á., Zombori, F., Forrai, S. and Szabó, I.P., 2022, May. Eco-marathon racing car casing and frame structure design. In IOP Conference Series: Mater. Sci. Eng. 1237(1), 012010 (2022)

  96. P. Gupta, B. Toksha, B. Patel, Y. Rushiya, P. Das, and M. Rahaman, Recent developments and research avenues for polymers in electric vehicles. The Chem. Record, 22, e202200186 (2022)

  97. M. M. Sahib, G. Kovács, and S. Szávai, Optimum design for the bottom panel of a heavy-duty truck by using a composite sandwich structure, in Vehicle and Automotive Engineering 4: Select Proceedings of the 4th VAE2022, ed. (Springer, Miskolc, Hungary, 2022), pp 734–746

  98. W. Alani, J. Zheng, M. Fayad, L. Lei, Enhancing the fuel saving and emissions reduction of light-duty vehicle by a new design of air conditioning worked by solar energy. Case Stud Therm. Eng. 30, 101798 (2022)

    Google Scholar 

  99. L. Maksym, M. Prabhakar, S. Jung-il, Preparation of a novel bio-flame-retardant liquid for flame retardancy of natural fibers and their composites. J. Ind. Text. 51, 7153S–7171S (2022)

  100. W. Zhang, J. Xu, Advanced lightweight materials for automobiles: a review. Mat. Des. 221, 110994 (2022)

  101. A. Tiwary, R. Kumar, J.S. Chohan, A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today: Proc. 51, 865–870 (2022)

    CAS  Google Scholar 

  102. S.L. Chernyshev, A review of Russian computer modeling and validation in aerospace applications. Prog. Aerosp. Sci. 128, 100766 (2022)

    Google Scholar 

  103. M. Asyraf, R. Ilyas, S. Sapuan, M. Harussani, H. Hariz, J. Aiman, D. M. Baitaba, M. Sanjay, M. Ishak, M. Norkhairunnisa, Advanced Composite in Aerospace Applications: Opportunities, Challenges, and Future Perspective, in Advanced Composites in Aerospace Engineering Applications. (Cham, USA, 2022), pp 471–498

  104. A. Rajput, S. K. Shukla, N. Thakur, A. Debnath, and B. Mangla, Advanced Polymeric Materials for Aerospace Applications, in Aerospace Polymeric Materials, (Massachusetts USA, 2022), pp 117–136

  105. S. Chuangchote, M. Nukunudompanich, Self‐Healing Carbon Fiber–Reinforced Polymers for Aerospace Applications, in Aerospace Polymeric Materials. (Massachusetts USA, 2022), pp 85–115

  106. Y. Du, J. Xu, J. Fang, Y. Zhang, X. Liu, P. Zuo, Q. Zhuang, Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 10, 6690–6700 (2022)

    CAS  Google Scholar 

  107. H.A. Mirza, L. Lang, M.N. Tabasum, Z. Meng, S. Alexandrov, J. Jiang, An investigation into the forming of fiber metal laminates with different thickness metal skins using hydromechanical deep drawing. Appl. Compos. Mater. 29, 1349–1365 (2022)

    Google Scholar 

  108. M. A. Alam, H. Ya, S. Sapuan, O. Mamat, B. Parveez, M. Yusuf, F. Masood, R. Ilyas, Recent Advancements in Advanced Composites for Aerospace Applications: A Review, Advanced Composites in Aerospace Engineering Applications. (Cham USA, 2022), pp 319–339

  109. M. Norkhairunnisa, T. Chai Hua, S. Sapuan, R. Ilyas, Evolution of aerospace composite materials, in Advanced Composites in Aerospace Engineering Applications, ed. (Springer, Cham USA 2022), pp 367–385

  110. H. Huang, S. Mojumder, D. Suarez, A. Al Amin, M. Fleming, W.K. Liu, Knowledge database creation for design of polymer matrix composite. Comput. Mater. Sci. 214, 111703 (2022)

    CAS  Google Scholar 

  111. F. Balıkoğlu, T.K. Demircioğlu, M. Yıldız, N. Arslan, A. Ataş, Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: effect of resin pins. J. Sandwich Struct. Mater. 22, 2030–2048 (2020)

    Google Scholar 

  112. A. S. Rana, R. Fangueiro (ed.), Advanced composite materials for aerospace engineering: processing, properties and applications. (Woodhead Publishing, Netherlands, 2016)

  113. N. Nash, A. Portela, C. Bachour-Sirerol, I. Manolakis, A. Comer, Effect of environmental conditioning on the properties of thermosetting-and thermoplastic-matrix composite materials by resin infusion for marine applications. Compo. Part B: Eng. 177, 107271 (2019)

    CAS  Google Scholar 

  114. B. Joseph, R. Mavelil Sam, P. Balakrishnan, H.J. Maria, S. Gopi, T. Volova, S.C.M. Fernandes, S. Thomas, Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: recent advances. Polymers 12, 1664 (2020)

    CAS  Google Scholar 

  115. R. A. Ilyas., S. M. Sapuan, Mohd Nurazzi Norizan, M. S. N. Atikah, M. R. M. Huzaifah, A. M. Radzi, M. R. Ishak et al., Potential of natural fibre composites for transport industry: A review. in Prosiding Seminar Enau Kebangsaan, Persatuan Pembangunan dan Industri Enau Malaysia (PPIEM) (Bahau, Negeri, 2019), pp 2–11

  116. R. Pemberton, J. Summerscales, J. Graham-Jones (ed.) Marine composites: design and performance. (Woodhead Publishing, Duxford UK, 2018)

  117. F. Franck, A. Saithna, T.D. Vieira, C. Pioger, G. Vigne, M. Le Guen, I. Rogowski, J.-M. Fayard, M. Thaunat, B. Sonnery-Cottet, Return to sport composite test after anterior cruciate ligament reconstruction (K-STARTS): factors affecting return to sport test score in a retrospective analysis of 676 patients. Sports Health 13, 364–372 (2021)

    Google Scholar 

  118. D. Davies-Frey, M. Bowkett, E. Constant, K. Thanapalan, Failure detection of composite materials in sport applications, in 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)Vol. 1. (IEEE, 2020), pp 563–567

  119. L. Taraborrelli, S. Choppin, S. Haake, S. Mohr, T. Allen, Effect of materials and design on the bending stiffness of tennis rackets. Eur. J. Phys. 42, 065005 (2021)

    Google Scholar 

  120. M. Sreejith, R. Rajeev, Fiber reinforced composites for aerospace and sports applications, in Fiber Reinforced Composites, ed. (Elsevier, Duxford, 2021), pp 821–859 

  121. W. Ouarhim, M. Ait-Dahi, M.-O. Bensalah, M. El Achaby, D. Rodrigue, R. Bouhfid, A. Qaiss, Characterization and numerical simulation of laminated glass fiber–polyester composites for a prosthetic running blade. J. Reinf. Plast. Compos. 40, 118–133 (2021)

    CAS  Google Scholar 

  122. R. Potluri, N.C. Krishna, Potential and applications of green composites in industrial space. Mater. Today: Proc. 22, 2041–2048 (2020)

    CAS  Google Scholar 

  123. A.K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė, Matrix materials used in composites: a comprehensive study. Mater. Today: Proc. 21, 1559–1562 (2020)

    Google Scholar 

  124. M. Umair, R. M. W. U. Khan, Fibers for Sports Textiles, in Fibers for Technical Textiles, ed. (Springer, Cham USA, 2020), pp 93–115

  125. D. Z. Tang, The application of carbon fiber materials in sports equipment, in Applied Mechanics and Materials, Vol. 443. (Trans Tech Publications Ltd., 2014), pp 613–616

  126. A.G. Koniuszewska, J.W. Kaczmar, Application of polymer based composite materials in transportation. Progress Rubber Plastics Recycl. Technol. 32, 1–24 (2016)

    Google Scholar 

  127. C.D. Tomes, M.D. Lewis, Effects of personal body armor on functional movement capability in healthy adults. Int. J. Exerc. Sci. 12, 536–546 (2019)

    Google Scholar 

  128. M. Fischer, M.N. Cramer, M. Huang, L.N. Belval, J.C. Watso, F.A. Cimino, C.G. Crandall, Burn injury does not exacerbate heat strain during exercise while wearing body armor. Med. Sci. Sports Exerc. 52, 2235–2241 (2020)

    CAS  Google Scholar 

  129. R.M. Orr, J. Robinson, K. Hasanki, K.A. Talaber, B. Schram, A. Roberts, The relationship between strength measures and task performance in specialist tactical police. J. Strength Cond. Res. 36, 757–762 (2022)

    Google Scholar 

  130. F.S. da Luz, F. da Costa Garcia Filho, M.S. Oliveira, L.F.C. Nascimento, S.N. Monteiro, Composites with natural fibers and conventional materials applied in a hard armor: a comparison. Polymers 12, 1920 (2020)

    CAS  Google Scholar 

  131. Y. Nawab, S. Sapuan, K. Shaker, (eds.), Composite Solutions for Ballistics (Woodhead Publishing, Duxford UK, 2021)

  132. S.-H. Lee, H.-Y. Kim, Utilization of by-products from livestock: study on the mechanical and thermal properties of biodegradable containers made with pork skin gelatin polymer. Foods 11, 2513 (2022)

    CAS  Google Scholar 

  133. P. Maljaars, L. Bronswijk, J. Windt, N. Grasso, M. Kaminski, Experimental validation of fluid–structure interaction computations of flexible composite propellers in open water conditions using BEM-FEM and RANS-FEM methods. J. Marine Sci. Eng. 6, 51 (2018)

    Google Scholar 

  134. C. Ciocan, P. Kristova, C. Annels, M. Derjean, L. Hopkinson, Glass reinforced plastic (GRP) a new emerging contaminant-first evidence of GRP impact on aquatic organisms. Mar. Pollut. Bull. 160, 111559 (2020)

    CAS  Google Scholar 

  135. M. Emami, M. Mohebi, R. Aghamajidi, Sensitivity analysis of different parameters on dynamic loads due to water hammer in water pipe lines projects (GRP Pipe). Spec. J. Eng. Appl. Sci. 4, 6–16 (2019)

    Google Scholar 

  136. H. Jamshaid, R. Mishra, M. Zeeshan, B. Zahid, S.A. Basra, M. Tichy, M. Muller, Mechanical performance of knitted hollow composites from recycled cotton and glass fibers for packaging applications. Polymers 13, 2381 (2021)

    CAS  Google Scholar 

  137. J.C. Hastie, M. Kashtalyan, I.A. Guz, Failure analysis of thermoplastic composite pipe (TCP) under combined pressure, tension and thermal gradient for an offshore riser application. Int. J. Pressure Vessels Piping 178, 103998 (2019)

    Google Scholar 

  138. J.C. Hastie, I.A. Guz, M. Kashtalyan, Corrigendum to “Effects of thermal gradient on failure of a thermoplastic composite pipe (TCP) riser leg”[Int. J. Pres. Ves. Pip. 172 (2019) 90–99]. Int. J. Press. Vessel. Pip. 190, 104172 (2021)

    Google Scholar 

  139. O.G. Diaz, G.G. Luna, Z. Liao, D. Axinte, The new challenges of machining ceramic matrix composites (CMCs): review of surface integrity. Int. J. Mach. Tools Manuf. 139, 24–36 (2019)

    Google Scholar 

  140. C.V. Amaechi, C. Chesterton, H.O. Butler, N. Gillet, C. Wang, I.A. Ja’e, A. Reda, A.C. Odijie, Review of composite marine risers for deep-water applications: design, development and mechanics. J. Compos. Sci. 6, 96 (2022)

    CAS  Google Scholar 

  141. H.-C. Möhring, C. Brecher, E. Abele, J. Fleischer, F. Bleicher, Materials in machine tool structures. CIRP Ann. 64, 725–748 (2015)

    Google Scholar 

  142. J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, K. Liu, A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram. Int. 45, 18155–18166 (2019)

    CAS  Google Scholar 

  143. S. Durmaz, Y.Z. Erdil, E. Avcı, Screw withdrawal resistance and surface roughness of woven carbon and glass fiber-reinforced wood-plastic composites. BioResources 15, 1894–1903 (2020)

    CAS  Google Scholar 

  144. L. Wang, C. He, Thermal and wear behavior of three inorganic fiber-reinforced wood-plastic composites in simulated soil aging conditions. Polym. Test. 80, 106129 (2019)

    CAS  Google Scholar 

  145. M. Asyraf, M. Ishak, A. Syamsir, A. Amir, N. Nurazzi, M. Norrrahim, M. Asrofi, M. Rafidah, R. Ilyas, M. Z. A. Rashid, Filament-wound glass-fibre reinforced polymer composites: potential applications for cross arm structure in transmission towers. Polym. Bull. 80, 1059–1084 (2023)

  146. D.J. Gardner, Y. Han, L. Wang, Wood–plastic composite technology. Curr. For. Rep. 1, 139–150 (2015)

    Google Scholar 

  147. A. Losini, A. Grillet, M. Bellotto, M. Woloszyn, G. Dotelli, Natural additives and biopolymers for raw earth construction stabilization–a review. Constr. Build. Mater. 304, 124507 (2021)

    CAS  Google Scholar 

  148. J. Tusnim, M. E. Hoque, M. C. Biswas, Biopolymers in building materials, in Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, ed. (Elsevier, Cambridge USA, 2020), pp 185–195

  149. W. Ferdous, A. Manalo, H.S. Wong, R. Abousnina, O.S. AlAjarmeh, Y. Zhuge, P. Schubel, Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr. Build. Mater. 232, 117229 (2020)

    CAS  Google Scholar 

  150. M. Asdollah-Tabar, M. Heidari-Rarani, M. Aliha, The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 25, 100684 (2021)

    Google Scholar 

  151. A.M. Hameed, M.T. Hamza, Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 157, 43–50 (2019)

    CAS  Google Scholar 

  152. J. Moohan, S.A. Stewart, E. Espinosa, A. Rosal, A. Rodríguez, E. Larrañeta, R.F. Donnelly, J. Domínguez-Robles, Cellulose nanofibers and other biopolymers for biomedical applications. A review. Appl. Sci. 10, 65 (2019)

    Google Scholar 

  153. M.S. Ganewatta, H.N. Lokupitiya, C. Tang, Lignin biopolymers in the age of controlled polymerization. Polymers 11, 1176 (2019)

    Google Scholar 

  154. J.R. Banu, S. Kavitha, R.Y. Kannah, T.P. Devi, M. Gunasekaran, S.-H. Kim, G. Kumar, A review on biopolymer production via lignin valorization. Bioresour. Technol. 290, 121790 (2019)

    Google Scholar 

  155. C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang, D. Liu, Y. Hou, Y. Yang, H. Zhu, Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mat. 33, 2001654 (2021)

    CAS  Google Scholar 

  156. M. Nasrollahzadeh, M. Ghasemzadeh, H. Gharoubi, Z. Nezafat, Progresses in polysaccharide and lignin-based ionic liquids: catalytic applications and environmental remediation. J. Mol. Liq. 342, 117559 (2021)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris M. AL-Oqla.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Oqla, F.M., Hayajneh, M.T. & Nawafleh, N. Advanced synthetic and biobased composite materials in sustainable applications: a comprehensive review. emergent mater. 6, 809–826 (2023). https://doi.org/10.1007/s42247-023-00478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00478-z

Keywords

Navigation