Skip to main content
Log in

Investigation the anticoking performance of SiO2 and TiO2 single and double-layer coatings in the steam ethane cracking furnace

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The formation of coke on the inner surface of the cracking furnace coils arises from undesirable side reactions during the cracking of hydrocarbons to ethylene. The accumulation of coke not only reduces heat transfer rate, production capacity, and internal diameter of reactor, but also increases pressure drop. To tackle the issue, the inner surface of coils can be coated by different materials. In this study, single- and double-layer coatings of silica (SiO2) and titania (TiO2) are applied over the coil surface of the ethylene cracking furnace, a performance of which is evaluated in terms of inhibitory activity against coke formation during the process. In this regard, the morphology and chemical composition of the applied coatings are studied using EDX and SEM analyses. The characterization results revealed the best inhibition performance of SiO2-coating with the coke reduction of around 68% compared to the uncoated surface. It is also conducted that although TiO2 coating cannot exert significant effects over the coke reduction, the double-layer coatings boost the inhibition performance notably; the coke reduction is around 40% and 57% for the SiO2-TiO2 and TiO2-SiO2 double-layer coatings, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.C. Reyniers, G.F. Froment, F.-D. Kopinke, G. Zimmermann, Coke formation in the thermal cracking of hydrocarbons 4 Modeling of coke formation in naphtha cracking. Ind. Eng. Chem. Res. 33(11), 2584–2590 (1994)

    Article  CAS  Google Scholar 

  2. M. Patil, M. Djokic, K. Verbeken, M.-F. Reyniers, K.M. Van Geem, Effect of phosphine on coke formation during steam cracking of propane. Materials (Basel) 14(17), 5075 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. J. Wang, M.-F. Reyniers, G.B. Marin, Influence of dimethyl disulfide on coke formation during steam cracking of hydrocarbons. Ind. Eng. Chem. Res. 46(12), 4134–4148 (2007)

    Article  CAS  Google Scholar 

  4. J. Zhou, Z. Wang, X. Luan, H. Xu, Anti-coking property of the SiO2/S coating during light naphtha steam cracking in a pilot plant setup. J. Anal. Appl. Pyrolysis 90(1), 7–12 (2011)

    Article  CAS  Google Scholar 

  5. B. Jambor, E. Hájeková, Formation of coke deposits and coke inhibition methods during steam cracking. Pet. Coal. 57, 2 (2015)

  6. C. Schietekat et al., Catalytic coating for reduced coke formation in ethylene-producing steam crackers: experimental and model validation, (2014)

  7. C.S. Li, Y.S. Yang, A glass based coating for enhancing anti-coking and anti-carburizing abilities of heat-resistant steel HP. Surf. Coatings Technol. 185(1), 68–73 (2004)

    Article  CAS  Google Scholar 

  8. A. Ram Mohan, S. Eser, Effectiveness of low-pressure metal–organic chemical vapor deposition coatings on metal surfaces for the mitigation of fouling from heated jet fuel. Ind. Eng. Chem. Res. 50(12), 7290–7304 (2011)

    Article  CAS  Google Scholar 

  9. C. Yang, G. Liu, X. Wang, R. Jiang, L. Wang, X. Zhang, Preparation and anticoking performance of MOCVD alumina coatings for thermal cracking of hydrocarbon fuels under supercritical conditions. Ind. Eng. Chem. Res. 51(3), 1256–1263 (2012)

    Article  CAS  Google Scholar 

  10. C.M. Schietekat et al., Catalytic coating for reduced coke formation in steam cracking reactors. Ind. Eng. Chem. Res. 54(39), 9525–9535 (2015)

    Article  CAS  Google Scholar 

  11. R. Seveno, P. Limousin, D. Averty, J.-L. Chartier, R. Le Bihan, H.W. Gundel, Preparation of multi-coating PZT thick films by sol–gel method onto stainless steel substrates. J. Eur. Ceram. Soc. 20(12), 2025–2028 (2000)

    Article  CAS  Google Scholar 

  12. Y.T. Caballero, E.A. Rondón, L. Rueda, C.A.H. Barrios, A. Coy, F. Viejo, Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel. J. Phys: Conf. Ser. 687(1), 12014 (2016)

    Google Scholar 

  13. Z. Zhang, L.F. Albright, Pretreatments of coils to minimize coke formation in ethylene furnaces. Ind. Eng. Chem. Res. 49(4), 1991–1994 (2010)

    Article  CAS  Google Scholar 

  14. M. Patil, S.A. Sarris, K. Verbeken, M.-F. Reyniers, K.M. Van Geem, Catalytic effect of dimethyl disulfide on coke formation on high-temperature alloys: myth or reality? Ind. Eng. Chem. Res. 59(34), 15165–15178 (2020)

    Article  CAS  Google Scholar 

  15. K.Y. Grace Chan, F. Inal, S. Senkan, Suppression of coke formation in the steam cracking of alkanes: ethane and propane. Ind. Eng. Chem. Res. 37(3), 901–907 (1998)

    Article  Google Scholar 

  16. A. Stoch, J. Stoch, A. Rakowska, An XPS and SEMS study of silica sol-gel/metal substrate interaction. Surf. interface Anal. 22(1–12), 242–247 (1994)

    Article  CAS  Google Scholar 

  17. E. Ranzi, M. Dente, S. Pierucci, S. Barendregi, P. Cronin, Coking Simul. Aids On-Stream Time, Oil Gas J 83, 49–52 (1985)

    CAS  Google Scholar 

  18. P. Geurts, A. Van Der Avoird, Hartree-Fock-Slater-LCAO studies of the acetylene-transition metal interaction: II Chemisorption on Fe and Cu cluster models. Surf. Sci. 103(23), 416–430 (1981)

    Article  CAS  Google Scholar 

  19. F.D. Kopinke, G. Zimmermann, G.C. Reyniers, G.F. Froment, Relative rates of coke formation from hydrocarbons in steam cracking of naphtha 2 Paraffins, naphthenes, mono-, di-, and cycloolefins, and acetylenes. Ind. Eng. Chem. Res. 32(1), 56–61 (1993)

    Article  CAS  Google Scholar 

  20. R.T.K. Baker, J.J. Chludzinski Jr., Filamentous carbon growth on nickel-iron surfaces: the effect of various oxide additives. J. Catal. 64(2), 464–478 (1980)

    Article  CAS  Google Scholar 

  21. D.J. Baxter, K. Natesan, Breakdown of chromium oxide scales in sulfur-containing environments at elevated temperatures. Oxid. Met. 31(3), 305–323 (1989)

    Article  CAS  Google Scholar 

  22. S.A. Sarris, M. Patil, K. Verbeken, M.-F. Reyniers, K.M. Van Geem, Effect of long-term high temperature oxidation on the coking behavior of Ni-Cr superalloys. Materials (Basel) 11(10), 1899 (2018)

    Article  PubMed  Google Scholar 

  23. M.J. DeWitt et al., Effect of aviation fuel type on pyrolytic reactivity and deposition propensity under supercritical conditions. Ind. Eng. Chem. Res. 50(18), 10434–10451 (2011)

    Article  CAS  Google Scholar 

  24. J. Browne, P. Broutin, F. Ropital, Coke deposition under steam cracking conditions–study of the influence of the feedstock conversion by micropilots experiments. Mater. Corros. 49(5), 360–366 (1998)

    Article  CAS  Google Scholar 

  25. M.-F.S.G. Reyniers, G.F. Froment, Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons. Ind. Eng. Chem. Res. 34(3), 773–785 (1995)

    Article  CAS  Google Scholar 

  26. J. Wang, M.-F. Reyniers, K.M. Van Geem, G.B. Marin, Influence of silicon and silicon/sulfur-containing additives on coke formation during steam cracking of hydrocarbons. Ind. Eng. Chem. Res. 47(5), 1468–1482 (2008)

    Article  CAS  Google Scholar 

  27. J. Zhou, H. Xu, X. Luan, X. Ling, Influence of the SiO2/S coating and sulfur/phosphorus-containing coking inhibitor on coke formation during thermal cracking of light naphtha. Fuel Process. Technol. 104, 198–203 (2012)

    Article  CAS  Google Scholar 

  28. W. Steinkusch, Engineering materials for radiant tubes. Gas Warme Int. 26(10), 493–501 (1977)

    Google Scholar 

  29. S. Tang, J. Wang, Q. Zhu, Y. Chen, X. Li, Preparation of rutile TiO2 coating by thermal chemical vapor deposition for anticoking applications. ACS Appl. Mater. Interfaces 6(19), 17157–17165 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhang et al., Characterization of MOCVD TiO2 coating and its anti-coking application in cyclohexane pyrolysis. Surf. Coatings Technol. 296, 108–116 (2016)

    Article  CAS  Google Scholar 

  31. S.A. Sarris, K. Verbeken, M.-F. Reyniers, K.M. Van Geem, Evaluation of a Ti–base alloy as steam cracking reactor material. Materials (Basel) 12(16), 2550 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. B. Bao, Z. Wang, H. Xu, J. Liu, Anti-coking effect of MnCr2O4 spinel coating during light naphtha thermal cracking. Energy Procedia 105, 4808–4813 (2017). https://doi.org/10.1016/j.egypro.2017.03.953

    Article  CAS  Google Scholar 

  33. D.J. Baxter, R.T. Derricott, R.C. Hurst, The influence of silicon and yttrium on isothermal scaling of an austenitic Fe-Cr-Ni alloy (IN 519) at 1000° C. Mater. Corros. 34(9), 446–450 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahimpour.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1773 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobaraki, M., Afshang, B., Rahimpour, M.R. et al. Investigation the anticoking performance of SiO2 and TiO2 single and double-layer coatings in the steam ethane cracking furnace. emergent mater. 7, 483–493 (2024). https://doi.org/10.1007/s42247-023-00451-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00451-w

Keywords

Navigation