Skip to main content
Log in

Preparation of β-CuGaO2 thin films by ion-exchange of β-NaGaO2 film fabricated by a solgel method

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

β-CuGaO2 is a wurtzite-derived phase that is promising for ferroelectric and photovoltaic applications. Its bandgap measured in the form of powders is about 1.5 eV and is direct according to density functional theory calculations, making it an appropriate solar light absorber. In this work, we describe our attempts to grow this complex phase by pulsed laser deposition (PLD) that resulted in growing mostly CuGa2O4 on various crystal substrates such as SrTiO3 (STO), Al2O3 (ALO), ZnO, and ZrO2:Y (9.5 mol%Y2O3) (YSZ). In contrast, β-CuGaO2 is obtained using ion-exchange of β-NaGaO2 film fabricated with a cost-efficient spin coating by solgel method, on substrates composed of a SiN film on c-Si (001) wafer. The potential of the different films obtained is discussed in view of photovoltaic applications using surface photovoltage under white light and surface photovoltage spectroscopy. While we show that β-CuGaO2 is a suitable photon absorber, we conclude that the fact that the films are discontinuous is detrimental for electronic transport and additional dopants must be inserted in this material to promote its optoelectronic properties and charge carrier transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Fix, in Advanced micro- and nanomaterials for photovoltaics. ed. by D. Ginley, T. Fix (Elsevier Science Bv, Amsterdam, 2019), p.19

    Chapter  Google Scholar 

  2. A. Quattropani, D. Stoeffler, T. Fix, G. Schmerber, M. Lenertz, G. Versini, J.L. Rehspringer, A. Slaoui, A. Dinia, S. Cois, J. Phys. Chem. C 122, 1070 (2018). https://doi.org/10.1021/acs.jpcc.7b10622

    Article  CAS  Google Scholar 

  3. A. Quattropani, A.S. Makhort, M.V. Rastei, G. Versini, G. Schmerber, S. Barre, A. Dinia, A. Slaoui, J.L. Rehspringer, T. Fix, S. Colis, B. Kundys, Nanoscale 10, 13761 (2018). https://doi.org/10.1039/c8nr03137a

    Article  CAS  Google Scholar 

  4. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 61 (2015). https://doi.org/10.1038/nphoton.2014.255

    Article  CAS  Google Scholar 

  5. T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 9 (2016). https://doi.org/10.7567/apex.9.052301

  6. T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi, N. Ohashi, J. Am. Chem. Soc. 136, 3378 (2014). https://doi.org/10.1021/ja501614n

    Article  CAS  Google Scholar 

  7. S. Song, D. Kim, H.M. Jang, B.C. Yeo, S.S. Han, C.S. Kim, J.F. Scott, Chem. Mater. 29, 7596 (2017). https://doi.org/10.1021/acs.chemmater.7b03141

    Article  CAS  Google Scholar 

  8. H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi, T. Omata, Inorg. Chem. 54, 1698 (2015). https://doi.org/10.1021/ic502659e

    Article  CAS  Google Scholar 

  9. I. Suzuki, H. Nagatani, M. Kita, T. Omata, Appl. Phys. Express 10, 4 (2017). https://doi.org/10.7567/apex.10.095501

    Article  CAS  Google Scholar 

  10. F. Wooten, Optical Properties of Solids (Elsevier Inc., 1972). https://doi.org/10.1016/C2013-0-07656-6

  11. T. Fix, G. Schmerber, J.L. Rehspringer, M.V. Rastei, S. Roques, J. Bartringer, A. Slaoui, J. Alloys Compd. 883, 6 (2021). https://doi.org/10.1016/j.jallcom.2021.160922

    Article  CAS  Google Scholar 

  12. J.H. Lee, P. Murugavel, H. Ryu, D. Lee, J.Y. Jo, J.W. Kim, H.J. Kim, K.H. Kim, Y. Jo, M.H. Jung, Y.H. Oh, Y.W. Kim, J.G. Yoon, J.S. Chung, T.W. Noh, Adv. Mater. 18, 3125 (2006). https://doi.org/10.1002/adma.200601621

    Article  CAS  Google Scholar 

  13. H.L. Wei, Z.W. Chen, Z.P. Wu, W. Cui, Y.Q. Huang, W.H. Tang, AIP Adv. 7, 7 (2017). https://doi.org/10.1063/1.5009032

    Article  CAS  Google Scholar 

  14. V. Varadarajan, D.P. Norton, Appl. Phys. A: Mater. Sci. Process. 85, 117 (2006). https://doi.org/10.1007/s00339-006-3667-0

    Article  CAS  Google Scholar 

  15. R. B. Gall and D. P. Cann, in High temperature phase equieliebria in the Cu2O-Ga2O3-In2O3 system, Cocoa Beach, Fl, 2003 (Amer Ceramic Soc), p. 143.

  16. T. Mine, H. Yanagi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 516, 5790 (2008). https://doi.org/10.1016/j.tsf.2007.10.072

    Article  CAS  Google Scholar 

  17. M. Jellite, J.L. Rehspringer, M.A. Fazio, D. Muller, G. Schmerber, G. Ferblantier, S. Colis, A. Dinia, M. Sugiyama, A. Slaoui, D. Cavalcoli, T. Fix, Sol. Energy 162, 1 (2018). https://doi.org/10.1016/j.solener.2017.12.061

    Article  CAS  Google Scholar 

  18. M.A. Green, M.J. Keevers, Progr. Photovolt. 3, 189 (1995). https://doi.org/10.1002/pip.4670030303

    Article  CAS  Google Scholar 

  19. J. Wang, V. Ibarra, D. Barrera, L. Xu, Y.J. Lee, J. Hsu, J. Phys. Chem. Lett. 6, 1071 (2015). https://doi.org/10.1021/acs.jpclett.5b00236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the XRD and SEM platforms of IPCMS including M. Lenertz and C. Leuvrey, and the staff of the C3Fab platform of ICube, including J. Bartringer for Raman measurements.

Funding

This work has been partially funded by the CNRS Energy unit (Cellule Energie) through the project CIGALE-PV and by the IdEx University of Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8412 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fix, T., Rehspringer, JL., Roques, S. et al. Preparation of β-CuGaO2 thin films by ion-exchange of β-NaGaO2 film fabricated by a solgel method. emergent mater. 6, 167–174 (2023). https://doi.org/10.1007/s42247-022-00404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00404-9

Keywords

Navigation