Skip to main content

Advertisement

Log in

Aramid fibre as potential reinforcement for polymer matrix composites: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

For the manufacturing of composites, researchers all over the world have moved from commercially available glass fibres to aramid fibres in recent years. The low density, ease of availability and high basic intensity of aramid fibres drew the attention of researchers and academicians alike. As a result, considerable progress has been made in the development of aramid fibre-reinforced composites for various industrial applications over the last decade. As a result, in-depth awareness of this fibre and its composites is essential right now in order to achieve better results. The emphasis of this study was on recent advancements in aramid fibre-reinforced polymer matrix composites. In this study, the manufacturing, surface treatment of fibres and possible applications are addressed. The advantages, disadvantages and real-time successful industrial components of this fibre are also briefly explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source: internet)

Fig. 2
Fig. 3

source: internet)

Fig. 4
Fig. 5

source: internet)

Fig. 6

source: internet)

Fig. 7

source: internet)

Fig. 8

source: internet)

Fig. 9
Fig. 10
Fig. 11
Fig. 12

source: internet)

Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. VR Arun. Prakash, R. Viswanthan, Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos. Part A: Appl. S 118, 317–326 (2019)

    Article  Google Scholar 

  2. P. Balakrishnan, M.J. John, L. Pothen, M. S. Sreekala, S. Thomas, Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced composite materials for aerospace engineering (Woodhead Publishing, 2016), pp. 365–383

  3. N. Saba, M. Jawaid, A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng. Chem. 67, 1–11 (2018)

    Article  CAS  Google Scholar 

  4. A. Rajadurai, Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process. Defence Technology 13(1), 40–46 (2017)

    Article  Google Scholar 

  5. V.A Vincent, C. Kailasanathan, V.K. Shanmuganathan, J.V Sai Prasanna Kumar, and V.R Arun Prakash. “Strength characterization of caryota urens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC-toughened epoxy structural composite.” Biomass. Convers. Biorefine. (2020): 1–11

  6. M.A Masuelli, “Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes.” In Fiber reinforced polymers-the technology applied for concrete repair. IntechOpen, 2013

  7. A. Abbadi, Z. Azari, S. Belouettar, J. Gilgert, P. Freres, Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests. Int. J. Fatigue 32(11), 1739–1747 (2010)

    Article  CAS  Google Scholar 

  8. A. Abbadi, C. Tixier, J. Gilgert, Z. Azari, Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects. Compos. Struct. 120, 394–405 (2015)

    Article  Google Scholar 

  9. M. Ertekin, “Aramid fibers.” In Fiber Technology for Fiber-Reinforced Composites, pp. 153–167. Woodhead Publishing, 2017

  10. P.V. Mikheyev, A.A. Berlin, Effect of splitting of polymer fibers on the strength of unidirectional composites. Mech. Compos. Mater. 55(2), 267–274 (2019)

    Article  Google Scholar 

  11. M. Widodo, A. El-Shafei, P.J. Hauser, Surface nanostructuring of kevlar fibers by atmospheric pressure plasma-induced graft polymerization for multifunctional protective clothing. J. Polym. Sci., Part B: Polym. Phys. 50(16), 1165–1172 (2012)

    Article  CAS  Google Scholar 

  12. D. Zhu, X. Zhang, Ou. Yunfu, M. Huang, Experimental and numerical study of multi-scale tensile behaviors of Kevlar® 49 fabric. J. Compos. Mater. 51(17), 2449–2465 (2017)

    Article  CAS  Google Scholar 

  13. J.S.L. Escobar, Breaking the kevlar ceiling: a national security case for full gender integration in the US army. Mil. Rev. 93(2), 70 (2013)

    Google Scholar 

  14. S. Kumar, D.S. Gupta, I. Singh, A. Sharma, Behavior of kevlar/epoxy composite plates under ballistic impact. J. Reinf. Plast. Compos. 29(13), 2048–2064 (2010)

    Article  CAS  Google Scholar 

  15. G. Yang, M. Park, S.-J. Park, Recent progresses of fabrication and characterization of fibers-reinforced composites: a review. Compos Commun. 14, 34–42 (2019)

    Article  Google Scholar 

  16. A. Abu Obaid, J.M. Deitzel, J.W. Gillespie Jr., J.Q. Zheng, The effects of environmental conditioning on tensile properties of high performance aramid fibers at near-ambient temperatures. J. Compos. Mater. 45(11), 1217–1231 (2011)

    Article  CAS  Google Scholar 

  17. S. Bourbigot, X. Flambard, Heat resistance and flammability of high performance fibres: a review. Fire Mater. 26(4–5), 155–168 (2002)

    Article  CAS  Google Scholar 

  18. C.Y. Yue, G.X. Sui, H.C. Looi, Effects of heat treatment on the mechanical properties of Kevlar-29 fibre. Compos. Sci. Technol. 60(3), 421–427 (2000)

    Article  CAS  Google Scholar 

  19. KK Herbert. Yeung, K.P. Rao, Mechanical properties of Kevlar-49 fibre reinforced thermoplastic composites. Polym. Polym. Compos. 20(5), 411–424 (2012)

    CAS  Google Scholar 

  20. N.H. Bakar, K.M. Hyie, Ahmad Safwan Ramlan, Mohd Khalid Hassan, Aidah Jumahat, Mechanical properties of kevlar reinforcement in kenaf composites. In Applied Mechanics and Materials, 465: 847–851. Trans Tech Publications Ltd (2014)

  21. Tamer Sinmazçelik, Egemen Avcu, Mustafa Özgür Bora, Onur Çoban, A review: Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32(7), 3671–3685 (2011)

    Article  Google Scholar 

  22. B.L. Deopura and N.V. Padaki. “Synthetic textile fibres: polyamide, polyester and aramid fibres.” In Textiles and Fashion, pp. 97–114. Woodhead Publishing (2015)

  23. L.F. Wu, J.G. Zhu, H.M. Xie, Investigation of residual stress in 2D plane weave aramid fibre composite plates using Moiré interferometry and hole-drilling technique. Strain 51(6), 429–443 (2015)

    Article  Google Scholar 

  24. Z. Sun, Hu. Xiaozhi, H. Chen, Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate. Int. J. Adhes. Adhes. 48, 288–294 (2014)

    Article  CAS  Google Scholar 

  25. I.I.K. Jinasena, “Electrospun nano-mat strengthened aramid fibre hybrid composites: improved mechanical properties by continuous nanofibres.” PhD diss., 2016

  26. D. Pico, W. Steinmann, Synthetic fibres for composite applications. In fibrous and textile materials for composite applications (Springer, Singapore, 2016), pp. 135–170

  27. N.N. Machalaba, K.E. Perepelkin, Heterocyclic aramide fibers–production principles, properties and application. J. Ind. Text. 31(3), 189–204 (2002)

    Article  CAS  Google Scholar 

  28. Kirill E. Perepelkin, Nikolai N. Machalaba, “Recent achievements in structure ordering and control of properties of para-aramide fibres.” Molecular Crystals and Liquid Crystals Science and Technology. Mol. Cryst. Liq. Cryst. 353(1), 275–286 (2000)

    Article  CAS  Google Scholar 

  29. Fatai Olufemi Aramide, Isiaka Oluwole Oladele, Davies Oladayo Folorunso, Evaluation of the effect of fiber volume fraction on the mechanical properties of a polymer matrix composite. Leonardo El. J. Pract. Technol. 14, 134–141 (2009)

    Google Scholar 

  30. B. Lee, K.H. Leong, I. Herszberg, Effect of weaving on the tensile properties of carbon fibre tows and woven composites. J. Reinf. Plast. Compos. 20(8), 652–670 (2001)

    Article  CAS  Google Scholar 

  31. T. Cassidy, “Knitwear design technology.” In Textile and Clothing Design Technology, pp. 441–461. CRC Press, 2017

  32. A. Alavudeen, N. Rajini, K. Subramanian, M. Thiruchitrambalam, and N. Venkateshwaren. “Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation.” Materials & Design (1980–2015) 66 (2015): 246–257

  33. I. Caetano, A. Leitão, Weaving Architectural Façades: exploring algorithmic stripe-based design patterns (2019)

  34. R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin, Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Def. Technol. 12(1), 52–58 (2016)

    Article  Google Scholar 

  35. M. Umair, S. Khubab, M.U. Javaid, M. Hussain, M. Kashif, Y. Nawab, Effect of weaving patterns on damage resistance of 3D woven jointless T and H shaped reinforcements. Mech. Adv. Mater. Struct. (2020): 1–14

  36. Zhensheng, Q.C. Wang. “Analysis of the cause of formation of weft crackiness of shuttle looms.” Cotton Textile Technology 10 (2001)

  37. R. Chakravorty, P. Dutta, and J. Ghose.“Sericulture and traditional craft of silk weaving in Assam.” (2010)

  38. K.L. Gandhi, “The fundamentals of weaving technology.” In Woven textiles, pp. 167–270. Woodhead Publishing, 2020

  39. S. Kovačević, I. Schwarz. Weaving complex patterns—from weaving looms to weaving machines. Cutting Edge Research in Technologies. England: In Tech (2015): 93–111

  40. T. Kinari, D. Miyashita, S. Shintaku, T. Moriguchi, T. Dan, Y. Iwata, Relation between heald motion and the sound caused by shedding motion on weaving machine. Sen’i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan) 55(2), T20–T25 (2002)

    Article  Google Scholar 

  41. A.N. Roy and G. Basu. “Improvement of a traditional knowledge by development of jacquard shedding based handloom for weaving ornamental jute fabric.” (2010)

  42. M.A. Shun-bin, and J.-x. QU. “Shedding mechanism development of new-type weaving machine.” Shanghai Textile Science & Technology 10 (2009)

  43. M. Negm, and S. Sanad. “Cotton fibres, picking, ginning, spinning and weaving.” In Handbook of Natural Fibres, pp. 3–48. Woodhead Publishing, 2020

  44. N. Khokar, 3D-weaving: theory and practice. J. Text. Inst. 92(2), 193–207 (2001)

    Article  Google Scholar 

  45. M. Luboschik, A. Radloff, H. Schumann, A new weaving technique for handling overlapping regions. In Proceedings of the International Conference on Advanced Visual Interfaces (2010), pp. 25–32

  46. C.-H. Chiu, C.-C. Cheng, Weaving method of 3D woven preforms for advanced composite materials. Text. Res. J. 73(1), 37–41 (2003)

    Article  CAS  Google Scholar 

  47. X. Dong, L.J. Wang, Sulfuric acid treatment of aramid fiber for improving the cationic dyeing performance. In Advanced Materials Research, vol 627 (Trans Tech Publications Ltd, 2013), pp. 243–247

  48. M. Xi, Y.-L. Li, S.-Y. Shang, D.-H. Li, Y.-X. Yin, X.-Y. Dai, Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf. Coat. Technol. 202(24), 6029–6033 (2008)

    Article  CAS  Google Scholar 

  49. S. Ajouguim, K. Abdelouahdi, M. Waqif, M. Stefanidou, L. Saâdi, Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26(3), 1503–1516 (2019)

    Article  CAS  Google Scholar 

  50. T. Dinesh, A. Kadirvel, Arunprakash Vincent, Effect of silane modified E-glass fibre/iron (III) oxide reinforcements on UP blended epoxy resin hybrid composite. Silicon. 11(5), 2487–2498 (2019)

    Article  CAS  Google Scholar 

  51. R. Viswanathan, V.R. Arunpraksh, Microwave shielding behavior of silanized Cuand Cu-Fe3O4 compound particles reinforced epoxy resin composite in E, F, I and Jband frequencies. Polym. Bull. 75, 4207–4225 (2018)

    Article  Google Scholar 

  52. A. Rajadurai, Radio frequency shielding behaviour of silane treated Fe 2 O 3/E-glass fibre reinforced epoxy hybrid composite. Appl. Phys. A 122(10), 1–9 (2016)

    Google Scholar 

  53. Tahar Merizgui, Abdechafik Hadjadj, V.R. Mecheri Kious, Arun Prakash, Bachir Gaoui, Effect of magnetic iron (III) oxide particle addition with MWCNTs in kenaf fibre-reinforced epoxy composite shielding material in ‘E’, ‘F’, ‘I’and ‘J’band microwave frequencies. Mat. Res. Express. 6(4), 046102 (2019)

    Article  Google Scholar 

  54. Joseph O. Nwadiogbu, Patrice AC. Okoye, Vincent I. Ajiwe, Nnaemeka JN. Nnaji, Hydrophobic treatment of corn cob by acetylation: kinetics and thermodynamics studies. J. Environ. Chem. Eng. 2(3), 1699–1704 (2014)

    Article  CAS  Google Scholar 

  55. H.U. Zaman, and R.A. Khan. “Acetylation used for natural fiber/polymer composites.” J. Thermoplast. Compos. Mater. (2019): 0892705719838000

  56. M. Sood, G. Dwivedi, Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt. J. Pet. 27(4), 775–783 (2018)

    Article  Google Scholar 

  57. E. Schmachtenberg, J. Schulte Zur Heide, J. Töpker, Application of ultrasonics for the process control of Resin Transfer Moulding (RTM). Polym. Test. 24(3), 330–338 (2005)

    Article  CAS  Google Scholar 

  58. G.-W. Lee, N.-J. Lee, J. Jang, K.-J. Lee, J.-D. Nam, Effects of surface modification on the resin-transfer moulding (RTM) of glass-fibre/unsaturated-polyester composites. Compos. Sci. Technol. 62(1), 9–16 (2002)

    Article  CAS  Google Scholar 

  59. D. Bender, J. Schuster, D. Heider, Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Compos. Sci. Technol. 66(13), 2265–2271 (2006)

    Article  CAS  Google Scholar 

  60. Youssef K. Hamidi, M. Akif Yalcinkaya, Gorkem E. Guloglu, Maya Pishvar, Mehrad Amirkhosravi, M. Cengiz Altan, Silk as a natural reinforcement: processing and properties of silk/epoxy composite laminates. Materials. 11(11), 2135 (2018)

    Article  Google Scholar 

  61. R. Meyer. Handbook of pultrusion technology. Springer Science & Business Media, 2012

  62. P. Carlone, Ismet Baran, Jesper Henri Hattel, G.S. Palazzo, Computational approaches for modeling the multiphysics in pultrusion process. Adv. Mech Eng. 5, 301875 (2013)

    Article  Google Scholar 

  63. V.A. Vincent, C. Kailasanathan, G. Ramesh, T. Maridurai and V.A. Prakash, 2021. Fabrication and characterization of hybrid natural fibre-reinforced sandwich composite radar wave absorbing structure for stealth radomes. Transactions on Electrical and Electronic Materials, pp.1–9

  64. N. Nguyen-Dinh, R. Zitoune, C. Bouvet, S. Leroux, Surface integrity while trimming of composite structures: X-ray tomography analysis. Compos. Struct. 210, 735–746 (2019)

    Article  Google Scholar 

  65. T. Merizgui, B. Gaoui, T.A. Sebaey, and V.R.A Prakash. “Electromagnetic shielding behavior of epoxy multi‐hybrid composites comprises of E‐glass fiber, Ag nanoparticle, and Ni nanosheet: a novel approach.” Polym Compos (2021)

  66. V.R.A. Prakash, J Francis Xavier, G. Ramesh, T. Maridurai, K. Siva Kumar, and R. Blessing Sam Raj. “Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite.” Biomass Conversion and Biorefinery (2020): 1–11

  67. S.A. Hallad, N.R. Banapurmath, V. Dhage, V.S. Ajarekar, M.T. Godi, and A.S. Shettar. “Kevlar reinforced polymer matrix composite for structural application.” In IOP Conference Series: Materials Science and Engineering, 376(1): 012074. IOP Publishing, 2018

  68. Silvio Leonardo Valença, Sandro Griza, Vandalucia Gomes, Eliana de Oliveira, Midori Sussuchi, Frederico Guilherme Carvalho, de Cunha. , Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Compos Part B: Eng. 70, 1–8 (2015)

    Article  Google Scholar 

  69. R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin, Mechanical performance of woven kenaf-Kevlar hybrid composites. J. Reinf. Plast. Compos. 33(24), 2242–2254 (2014)

    Article  CAS  Google Scholar 

  70. S. Cao, Q. Chen, Y. Wang, S. Xuan, W. Jiang, X. Gong, High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid. Compos. A Appl. Sci. Manuf. 100, 161–169 (2017)

    Article  CAS  Google Scholar 

  71. A.H.A. Rashid, R. Ahmad, M. Jaafar, M.N Roslan, S. Ariffin, Mechanical properties evaluation of woven coir and kevlar reinforced epoxy composites. In Advanced Materials Research, vol. 277 (Trans Tech Publications Ltd, 2011), pp. 36–42

  72. L. Manes. Bresciani, A. Andrea Manes, G. Iannitti. Ruggiero, Marco Giglio, Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: macro-homogeneous and Meso-heterogeneous approaches. Compos. Part B: Eng. 88, 114–130 (2016)

    Article  CAS  Google Scholar 

  73. Aswani Kumar Bandaru, Shivdayal Patel, Yogesh Sachan, Suhail Ahmad, R. Alagirusamy, Naresh Bhatnagar, Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos. Part A: Appl. Sci. Manuf. 90, 642–652 (2016)

    Article  CAS  Google Scholar 

  74. D. Zhu, B. Mobasher, A. Vaidya, S.D. Rajan, Mechanical behaviors of Kevlar 49 fabric subjected to uniaxial, biaxial tension and in-plane large shear deformation. Compos. Sci. Technol. 74, 121–130 (2013)

    Article  CAS  Google Scholar 

  75. Susmita Naik, R.D. Dandagwhal, Praveen Kumar Loharkar, A review on various aspects of Kevlar composites used in ballistic applications. Mater Today: Proc. 21, 1366–1374 (2020)

    CAS  Google Scholar 

  76. R. Suthan, V. Jayakumar, S. Madhu, Evaluation of mechanical properties of kevlar fibre epoxy composites: an experimental study. Int. J. Veh. Struct. Syst 10, 389–394 (2018)

    Google Scholar 

  77. P. Priyanka, A. Dixit, H.S. Mali, High-strength hybrid textile composites with carbon, Kevlar, and E-glass fibers for impact-resistant structures. A review. Mech. Compos. Mater. 53(5), 685–704 (2017)

    Article  CAS  Google Scholar 

  78. A.N. Dickson, J.N. Barry, K.A. McDonnell, D.P. Dowling, Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 16, 146–152 (2017)

    CAS  Google Scholar 

  79. Vivekanandhan Chinnasamy, Sampath Pavayee Subramani, Sathish Kumar Palaniappan, Bhuvaneshwaran Mylsamy, Karthik Aruchamy, Characterization on thermal properties of glass fiber and kevlar fiber with modified epoxy hybrid composites. J. Mater. Res. Technol. 9(3), 3158–3167 (2020)

    Article  CAS  Google Scholar 

  80. Hamid Abdelhafid Ghouti, Abdeldjalil Zegaoui, Mehdi Derradji, Wan-an Cai, Jun Wang, Wen-bin Liu, Abdul Qadeer Dayo, Multifunctional hybrid composites with enhanced mechanical and thermal properties based on polybenzoxazine and chopped kevlar/carbon hybrid fibers. Polymers. 10(12), 1308 (2018)

    Article  Google Scholar 

  81. Abdeldjalil Zegaoui, Mehdi Derradji, Abdul Qadeer Dayo, Aboubakr Medjahed, Hui-yan Zhang, Wan-an Cai, Wen-bin Liu, Rui-kun Ma, Jun Wang, High-performance polymer composites with enhanced mechanical and thermal properties from cyanate ester/benzoxazine resin and short Kevlar/glass hybrid fibers. High Perform. Polym. 31(6), 719–732 (2019)

    Article  CAS  Google Scholar 

  82. J. Naveen, M. Jawaid, E.S. Zainudin, Mohamed TH. Sultan, R. Yahaya, M.S. Abdul Majid, Thermal degradation and viscoelastic properties of Kevlar/Cocos nucifera sheath reinforced epoxy hybrid composites. Compos. Struct. 219, 194–202 (2019)

    Article  Google Scholar 

  83. Y. Mo, L. Yang, T. Zou, W. Hou, R. Liao, Preparation of composite insulating paper with decreased permittivity, good mechanical and thermal properties by Kevlar/nano cellulose fibrils/softwood pulp hybrid. IEEE Access 7, 104258–104268 (2019)

    Article  Google Scholar 

  84. J. Shiju, F. Al-Sagheer, Z. Ahmad, Thermal mechanical properties of graphene nano-composites with Kevlar-Nomex copolymer: a comparison of the physical and chemical interactions. Polymers 12(11), 2740 (2020)

    Article  CAS  Google Scholar 

  85. N. Shaari, A. Jumahat, M. Khafiz, M. Razif, Impact resistance properties of Kevlar/glass fiber hybrid composite laminates. J. Teknol 76(3) (2015)

  86. M.B. Bigdilou, R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, M.A. Mohammadi. Experimental assessment of adding carbon nanotubes on the impact properties of Kevlar-ultrahigh molecular weight polyethylene fibers hybrid composites. J. Ind. Text. (2020): 1528083720921483

  87. S. Yang, V.B. Chalivendra, Y.K. Kim, Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos. Struct. 168, 120–129 (2017)

    Article  Google Scholar 

  88. Aswani Kumar Bandaru, Vikrant V. Chavan, Suhail Ahmad, R. Alagirusamy, Naresh Bhatnagar, Low velocity impact response of 2D and 3D Kevlar/polypropylene composites. Int. J. Impact Eng. 93, 136–143 (2016)

    Article  Google Scholar 

  89. Thingujam Jackson Singh, Sutanu Samanta, Characterization of Kevlar fiber and its composites: a review. Mater Today: Proc. 2(4–5), 1381–1387 (2015)

    CAS  Google Scholar 

  90. P.N.B. Reis, J.A.M. Ferreira, P. Santos, M.O.W. Richardson, J.B. Santos, Impact response of Kevlar composites with filled epoxy matrix. Compos. Struct. 94(12), 3520–3528 (2012)

    Article  Google Scholar 

  91. Mehmet Bulut, Mohamad Alsaadi, Ahmet Erkliğ, A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles. Mater. Res. Express. 5(2), 025301 (2018)

    Article  Google Scholar 

  92. R. Gokuldass, R. Ramesh, Mechanical and low velocity impact behaviour of intra-ply glass/kevlar fibre reinforced nano-silica and micro-rubber modified epoxy resin hybrid composite. Mater. Res. Express. 6(5), 055302 (2019)

    Article  CAS  Google Scholar 

  93. Y. Hu, W. Liu, Y. Shi, Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening. Compos. Struct. 216, 127–141 (2019)

    Article  Google Scholar 

  94. N. Hashim, D.L.A. Majid, E.-S. Mahdi, R. Zahari, N. Yidris, Effect of fiber loading directions on the low cycle fatigue of intraply carbon-Kevlar reinforced epoxy hybrid composites. Compos. Struct. 212, 476–483 (2019)

    Article  Google Scholar 

  95. Lianpeng Yin, Zongtao Zhou, Zhu Luo, Jincheng Zhong, Peng Li, Bo. Yang, Le. Yang, Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites. Polym. Test. 80, 106092 (2019)

    Article  CAS  Google Scholar 

  96. M. Alsaadi, M. Bulut, A. Erkliğ, A. Jabbar, Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Compos. B Eng. 152, 169–179 (2018)

    Article  CAS  Google Scholar 

  97. Lianpeng Yin, Zhu Luo, Jincheng Zhong, Bo. Yang, Yongchun Ji, Behaviour and mechanism of fatigue crack growth in aramid-fibre-reinforced styrene–butadiene rubber composites. Int. J. Fatigue. 134, 105502 (2020)

    Article  CAS  Google Scholar 

  98. H. Tan, H.S. Tan, X.L. Tang, Y.G. Wang, L.P. Li, Mechanical properties and dynamic mechanical behavior for long aramid fiber reinforced impact polypropylene copolymer. In Advanced Materials Research, vol. 591 (Trans Tech Publications Ltd, 2012), pp. 1079–1082

  99. N. Ramasamy, V. Arumugam, S. Rajkumar, Surface modification of Kevlar fibre fabric and its influence on the properties of Kevlar/epoxy composites. Bull. Mater. Sci. 42(4), 1–9 (2019)

    Article  CAS  Google Scholar 

  100. J. Zhong, Z. Luo, Z. Hao, Y. Guo, Z. Zhou, P. Li, B. Xue, Enhancing fatigue properties of styrene butadiene rubber composites by improving interface adhesion between coated aramid fibers and matrix. Compos. B Eng. 172, 485–495 (2019)

    Article  CAS  Google Scholar 

  101. N. Nawafleh, F.K.E. Elibol, M. Aljaghtham, E. Oflaz, A.J. Ciciriello, C.M. Dumont, E. Dauer, R.M. Gorguluarslan, T. Demir, E. Celik, Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing. J. Mater. Sci. 55, 11284–11295 (2020)

    Article  CAS  Google Scholar 

  102. H. Fouad, Abdel-Hamid I. Mourad, Basheer A. ALshammari, Mohamed K. Hassan, Mohammed Y. Abdallah, Mohamed Hashem, Fracture toughness, vibration modal analysis and viscoelastic behavior of Kevlar, glass, and carbon fiber/epoxy composites for dental-post applications. J. Mech. Behav. Biomed. Mater. 101, 103456 (2020)

    Article  CAS  Google Scholar 

  103. B. Beylergil, M. Tanoglu, E. Aktas, Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils. Steel Compos. Struct 31(2), 113–123 (2019)

    Google Scholar 

  104. Sushant Sharma, S.R. Dhakate, Abhijit Majumdar, Bhanu Pratap Singh, Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites. Carbon. 152, 631–642 (2019)

    Article  CAS  Google Scholar 

  105. Z.Y. Shi, P. Cui, X. Li, A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(13), 4508–4520 (2019)

    Article  CAS  Google Scholar 

  106. D.D. Gill, D.M. Yip-Hoi, M. Meaker, T. Boni, E.L. Eggeman, A.M. Brennan, A. Anderson, Studying the mechanisms of high rates of tool wear in the machining of aramid honeycomb composites. In International Manufacturing Science and Engineering Conference, vol. 50732 (American Society of Mechanical Engineers, 2017), p. V002T03A002

  107. S. Vigneshwaran, M. Uthayakumar, V. Arumugaprabu, Abrasive water jet machining of fiber-reinforced composite materials. J. Reinf. Plast. Compos. 37(4), 230–237 (2018)

    Article  CAS  Google Scholar 

  108. S. Rajesh, B. Vijaya Ramnath, J. Jeykrishnan, S. Jayanthi Nathan, M.R. Karthik, Optimization of machining parameters of aramid natural hybrid composite in abrasive water jet machining using taguchi method. Adv. Sci. Eng. Med. 10(3–4), 451–454 (2018)

    Article  Google Scholar 

  109. T. Rangaswamy, R. Nagaraja. Machining of Kevlar Aramid fiber reinforced polymer composite laminates (K-1226) using solid carbide step drill K34. In AIP Conference Proceedings, vol. 2247, no. 1 (AIP Publishing LLC, 2020), p. 050014

  110. L. Jin, Q. Jing, Performance analysis of drilling test of aramid fiber composite. In IOP Conference Series: Materials Science and Engineering, vol. 616, no. 1 (IOP Publishing, 2019), p. 012017

  111. S. Liu, T. Yang, C. Liu, Du. Yu, Comprehensive investigation of cutting mechanisms and hole quality in dry drilling woven aramid fibre–reinforced plastic with typical tools. Proc. Inst. Mech. Eng. B. J. Eng. Manuf. 233(14), 2471–2491 (2019)

    Article  Google Scholar 

  112. F.J. Khusiafan, Use of KEVLAR® 49 in aircraft components. Eng. Manag. Res. 7(2), 14–19 (2018)

    Article  Google Scholar 

  113. Tawfeeq W. Mohammed, Dalmn Yaseen Taha, Rafal R. Abdul-Ilah, Evaluation of composite material used in the wings of typical airplane based on stress analysis. Eur. J. Eng. Technol. Res. 3(11), 37–41 (2018)

    Google Scholar 

  114. B. Ravishankar, Sanjay K. Nayak, M. Abdul Kader, Hybrid composites for automotive applications–a review. J. Reinf. Plast. Compos. 38(18), 835–845 (2019)

    Article  CAS  Google Scholar 

  115. T.P. Hovorun, B. Khrystyna Volodymyrivna, V.I. Pererva, S.G. Rudenko, and A.I. Martynov. “Modern materials for automotive industry.” (2017)

  116. M. Patel, B. Pardhi, S. Chopara, M. Pal, Lightweight composite materials for automotive-a review. Carbon 1(2500), 151 (2018)

    Google Scholar 

  117. Dipen Kumar Rajak, Durgesh D. Pagar, Pradeep L. Menezes, Emanoil Linul, Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667 (2019)

    Article  CAS  Google Scholar 

  118. K. Ramar, K. Paramasivam, Y. Subramani, J. Jayaraman, R.S. Shivashankaran, D.S. Deivanayagam, Design and analysis of composite leaf spring using aramid fibre. In AIP Conference Proceedings, vol. 2311, no. 1 (AIP Publishing LLC, 2020), p. 050014

  119. Z.-f. Liu, J.-y.Xiao, Y. Wang, J. Liu, J.-c. Zeng, Fabrication and investigation of aramid fibre reinforced airship envelop materials [J]. Hi-Tech Fiber & Application 3 (2006)

  120. Dong-Jun. Kwon, Yeong-Jin. Jang, Seong-Baek. Yang, Jeong-Hyun. Yeum, Ji-Hoon. Jung, Sang Yong Nam, Young-Bin. Park, Wooseok Ji, Investigation of impact resistance performance of carbon fiber reinforced polypropylene composites with different lamination to applicate fender parts. Compos. Part B: Eng. 215, 108767 (2021)

    Article  CAS  Google Scholar 

  121. S.K. Mutkule, P.P. Gorad, S.R. Raut, A.H. Nikam, Optimum and reliable material for wind turbine blade. Int. J. Eng. Res. Technol. 4(2), 624–627 (2015)

    Google Scholar 

  122. O. Rajad, M. Hamid, A. El Marjani, Fiber orientation effect on the behavior of the composite materials of the horizontal axis wind turbine blade (HAWTB). In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). (IEEE, 2018), pp. 1–6

  123. Leon Mishnaevsky, Kim Branner, Helga Nørgaard. Petersen, Justine Beauson, Malcolm McGugan, Bent F. Sørensen, Materials for wind turbine blades: an overview. Materials. 10(11), 1285 (2017)

    Article  Google Scholar 

  124. G. Kalagi, R. Patil, N. Nayak, Natural fiber reinforced polymer composite materials for wind turbine blade applications. Int. J. Sci. Dev. Res 1, 28–37 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Dharmavarapu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmavarapu, P., M.B.S, S. Aramid fibre as potential reinforcement for polymer matrix composites: a review. emergent mater. 5, 1561–1578 (2022). https://doi.org/10.1007/s42247-021-00246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00246-x

Keywords

Navigation