Skip to main content

Advertisement

Log in

Effects of chitosan-glycerol phosphate hydrogel on the maintenance and homing of hAd-MSCs after xenotransplantation into the rat liver

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Problems associated with the treatment of liver failure necessitate more research on advanced strategies like cell-based therapy and tissue engineering. Since cell therapy approaches suffer from some limitations, tissue engineering and material science converge the sight onto stem cell-biomaterial based therapy. In this study, the human adipose-derived mesenchymal stem cells (hAd-MSCs), carrying ectopic fluorescent reporter genes, were encapsulated in the chitosan-β-glycerol phosphate hydroxyethyl cellulose (β-GP-HEC) and transplanted into the right lobe of the intact liver of Wistar rats (as cell-laden scaffolds). In addition, labeled hAd-MSCs were injected into the liver (as scaffold-free groups). All experimental groups were monitored after 15, 45, 90, and 180 days of transplantation. Fluorescence microscopy and histological evaluations were used to monitor the migration and distribution of cells within the two test groups along with their related controls, during the 6-month follow-up. Moreover, the ability of cells to migrate to other tissues was detected by quantitative PCR. Macroscopic inspection during this period showed no evidence of pathological inflammatory responses. Microscopic observations revealed that the injected cells were detectable at the target organ, for at least 6 months in both scaffold and scaffold-free groups. However, the scaffold-free samples showed signs of reduction in cellular augmentation over time. The molecular assessment also confirmed that the application of scaffold in vivo reduced unnecessary cell migration into other organs. In conclusion, the application of cell-seeded β-GP-HEC scaffold not only improved cell survival but also reduced the rate of cellular escape from the target area of transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Marcellin, B.K. Kutala, Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 38, 2–6 (2018)

    Article  Google Scholar 

  2. C. Hu, Z. Wu, L. Li, Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J. Cell. Mol. Med. 24(1), 40–49 (2020)

    Article  Google Scholar 

  3. A. Sun, W. Gao, T. Xiao, Autologous bone marrow stem cell transplantation via the hepatic artery for the treatment of hepatitis B virus-related cirrhosis: A PRISMA-compliant meta-analysis based on the Chinese population. Stem Cell Res Ther 11(1), 1–17 (2020)

    Article  Google Scholar 

  4. V. Iansante, R.R. Mitry, C. Filippi, E. Fitzpatrick, A. Dhawan, Human hepatocyte transplantation for liver disease: Current status and future perspectives. Pediatr. Res. 83(1), 232–240 (2018)

    Article  CAS  Google Scholar 

  5. L.J. Wang, Y.M. Chen, D. George, F. Smets, E.M. Sokal, E.G. Bremer, H.E. Soriano, Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl. 8(9), 822–828 (2002)

    Article  Google Scholar 

  6. C. Hu, L. Li, In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 6(8), 562–574 (2015)

    Article  CAS  Google Scholar 

  7. M.F. Pittenger et al., Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    Article  CAS  Google Scholar 

  8. K. Bieback, S. Kern, H. Klüter, H. Eichler, Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4), 625–634 (2004)

    Article  Google Scholar 

  9. S.A. Scherjon et al., Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7), 1338–1345 (2004)

    Article  Google Scholar 

  10. D.T.b. Shih et al., Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23(7), 1012–1020 (2005)

    Article  CAS  Google Scholar 

  11. P. De Coppi et al., Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25(1), 100–106 (2007)

    Article  Google Scholar 

  12. P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7(2), 211–228 (2001)

    Article  CAS  Google Scholar 

  13. K. Furuhashi, N. Tsuboi, A. Shimizu, T. Katsuno, H. Kim, Y. Saka, T. Ozaki, Y. Sado, E. Imai, S. Matsuo, S. Maruyama, Serum-starved adipose-derived stromal cells ameliorate crescentic GN by promoting immunoregulatory macrophages. J. Am. Soc. Nephrol. 24(4), 587–603 (2013)

    Article  CAS  Google Scholar 

  14. Y. Fu, J. Deng, Q. Jiang, Y. Wang, Y. Zhang, Y. Yao, F. Cheng, X. Chen, F. Xu, M. Huang, Y. Yang, S. Zhang, D. Yu, R.C. Zhao, Y. Wei, H. Deng, Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells. Stem Cell Res Ther 7(1), 105 (2016)

    Article  Google Scholar 

  15. H. Okura, M. Soeda, M. Morita, M. Fujita, K. Naba, C. Ito, A. Ichinose, A. Matsuyama, Therapeutic potential of human adipose tissue-derived multi-lineage progenitor cells in liver fibrosis. Biochem. Biophys. Res. Commun. 456(4), 860–865 (2015)

    Article  CAS  Google Scholar 

  16. N. Liao et al., Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci. Rep. 6, 18746 (2016)

    Article  CAS  Google Scholar 

  17. M.-J. Chen, Y. Lu, N.E. Simpson, M.J. Beveridge, A.S. Elshikha, M.A. Akbar, H.Y. Tsai, S. Hinske, J. Qin, C.R. Grunwitz, T. Chen, M.L. Brantly, S. Song, In situ transplantation of alginate bioencapsulated adipose tissues derived stem cells (ADSCs) via hepatic injection in a mouse model. PLoS One 10(9), e0138184 (2015)

    Article  Google Scholar 

  18. H. Li, B. Zhang, Y. Lu, M. Jorgensen, B. Petersen, S. Song, Adipose tissue-derived mesenchymal stem cell-based liver gene delivery. J. Hepatol. 54(5), 930–938 (2011)

    Article  CAS  Google Scholar 

  19. M. Saheli et al., Generation of transplantable three-dimensional hepatic-patch to improve the functionality of hepatic cells in vitro and in vivo. Stem Cells Dev. 29(5), 301–313 (2020)

    Article  Google Scholar 

  20. C. Siltanen, M. Diakatou, J. Lowen, A. Haque, A. Rahimian, G. Stybayeva, A. Revzin, One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids. Acta Biomater. 50, 428–436 (2017)

    Article  CAS  Google Scholar 

  21. N. Mobarra, M. Soleimani, F. Kouhkan, Z. Hesari, R. Lahmy, M. Mossahebi-Mohammadi, E. Arefian, Z. Jaafarpour, H. Nasiri, R. Pakzad, R. Tavakoli, P. Pasalar, Efficient differentiation of human induced pluripotent stem cell (hiPSC) derived hepatocyte-like cells on hMSCs feeder. Int. J. Hematol.-Oncol Stem Cell Res. 8(4), 20–29 (2014)

    Google Scholar 

  22. M. Saheli, M. Sepantafar, B. Pournasr, Z. Farzaneh, M. Vosough, A. Piryaei, H. Baharvand, Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J. Cell. Biochem. 119(6), 4320–4333 (2018)

    Article  CAS  Google Scholar 

  23. J.F. Prudden, P. Migel, P. Hanson, L. Friedrich, L. Balassa, The discovery of a potent pure chemical wound-healing accelerator. Am. J. Surg. 119(5), 560–564 (1970)

    Article  CAS  Google Scholar 

  24. R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli, V. Vasi, Biological activity of chitosan: Ultrastructural study. Biomaterials 9(3), 247–252 (1988)

    Article  CAS  Google Scholar 

  25. P.J. VandeVord, H.W.T. Matthew, S.P. DeSilva, L. Mayton, B. Wu, P.H. Wooley, Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59(3), 585–590 (2002)

    Article  CAS  Google Scholar 

  26. C. Hoemann et al., Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J. Biomed. Mater. Res. A 83(2), 521–529 (2007)

    Article  CAS  Google Scholar 

  27. A. Chenite, C. Chaput, D. Wang, C. Combes, M.D. Buschmann, C.D. Hoemann, J.C. Leroux, B.L. Atkinson, F. Binette, A. Selmani, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21), 2155–2161 (2000)

    Article  CAS  Google Scholar 

  28. C. Hoemann et al., Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr. Cartil. 13(4), 318–329 (2005)

    Article  CAS  Google Scholar 

  29. J. Gimble, F. Guilak, Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy 5(5), 362–369 (2003)

    Article  Google Scholar 

  30. H. Naderi-Meshkin, K. Andreas, M.M. Matin, M. Sittinger, H.R. Bidkhori, N. Ahmadiankia, A.R. Bahrami, J. Ringe, Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol. Int. 38(1), 72–84 (2014)

    Article  CAS  Google Scholar 

  31. A. Seki, Y. Sakai, T. Komura, A. Nasti, K. Yoshida, M. Higashimoto, M. Honda, S. Usui, M. Takamura, T. Takamura, T. Ochiya, K. Furuichi, T. Wada, S. Kaneko, Adipose tissue-derived stem cells as a regenerative therapy for a mouse steatohepatitis-induced cirrhosis model. Hepatology 58(3), 1133–1142 (2013)

    Article  CAS  Google Scholar 

  32. A. Haddad-Mashadrizeh et al., Cytotoxicity and biocompatibility evaluation of chitosan-beta glycerol phosphate-hydroxyethyl cellulose hydrogel on adult rat liver for cell-based therapeutic applications. Int. J. Biomed. Eng. Technol. 12(3), 228–239 (2013)

    Article  Google Scholar 

  33. A. Pirosa, R. Gottardi, P.G. Alexander, R.S. Tuan, Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 9(1), 112 (2018)

    Article  CAS  Google Scholar 

  34. M. Kim, I.E. Erickson, A.H. Huang, S.T. Garrity, R.L. Mauck, D.R. Steinberg, Donor variation and optimization of human mesenchymal stem cell chondrogenesis in hyaluronic acid. Tissue Eng. A 24(21-22), 1693–1703 (2018)

    Article  CAS  Google Scholar 

  35. T. Liu, J. Li, Z. Shao, K. Ma, Z. Zhang, B. Wang, Y. Zhang, Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 56, 9–15 (2018)

    Article  Google Scholar 

  36. F. Shahabipour, N. Ashammakhi, R.K. Oskuee, S. Bonakdar, T. Hoffman, M.A. Shokrgozar, A. Khademhosseini, Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Transl. Res. 216, 57–76 (2020)

    Article  CAS  Google Scholar 

  37. E. Jain, A. Damania, A. Kumar, Biomaterials for liver tissue engineering. Hepatol. Int. 8(2), 185–197 (2014)

    Article  Google Scholar 

  38. L. Xu, S. Wang, X. Sui, Y. Wang, Y. Su, L. Huang, Y. Zhang, Z. Chen, Q. Chen, H. du, Y. Zhang, L. Yan, Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl. Mater. Interfaces 9(17), 14716–14723 (2017)

    Article  CAS  Google Scholar 

  39. H. Naderi, M.M. Matin, A.R. Bahrami, Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl. 26(4), 383–417 (2011)

    Article  CAS  Google Scholar 

  40. M.A. Rizzo, M.W. Davidson, D.W. Piston, Fluorescent protein tracking and detection: Fluorescent protein structure and color variants. Cold Spring Harb Protoc 2009(12), pdb. top63 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ehsan Bahramzadeh and Mohammadmahdi Esmail-Jami for their editing suggestions, as well as Hassan Tamadonipour, Mohammad Nakhaei, and Dr. Moein Farschian for their excellent technical assistance.

Funding

The study was financed by grants from Ferdowsi University of Mashhad and Iran National Science Foundation (INSF) and performed in the Institute of Biotechnology, Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Contributions

AHM, MMM, and ARB were responsible for the design of experiments and data acquisition, and data interpretation; FS, SE, and AZ contributed to data analysis and manuscript preparation. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmad Reza Bahrami.

Ethics declarations

Ethics approval and consent to participate

The authors declare that the research was conducted with the approval from Ferdowsi University of Mashhad Ethics Committee (IR.UM.REC.1399.069). Written informed consents were obtained from the patients.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad-Mashadrizeh, A., Matin, M.M., Shahabipour, F. et al. Effects of chitosan-glycerol phosphate hydrogel on the maintenance and homing of hAd-MSCs after xenotransplantation into the rat liver. emergent mater. 5, 519–528 (2022). https://doi.org/10.1007/s42247-021-00167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00167-9

Keywords

Navigation