Skip to main content
Log in

New green inhibitor of Olax subscorpioidea root for J55 carbon steel corrosion in 15% HCl: theoretical, electrochemical, and surface morphological investigation

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The corrosion inhibition performance of Olax subscorpioidea (OS) root extract on J55 carbon steel corrosion in acidizing solution stimulated with 15% HCl was studied using weight loss and electrochemical techniques as well as surface morphological study. The weight loss study showed a decrease in corrosion rate and an increase in inhibition efficiency by increasing the OS concentration. Potentiodynamic polarization measurements indicated that the OS extract is a mixed-type corrosion inhibitor but predominantly of anodic type. Electrochemical impedance spectroscopy (EIS) studies revealed that the introduction of OS in the 15% HCl solution increases the charge transfer resistance and simultaneously decreases the double-layer capacitance, enhancing an adsorbed film formation on the steel surface. Maximum inhibition efficiency of 89.7% was obtained with EIS study in the presence of 2.0 g/L of extract. The Fourier-transform infrared spectroscopy (FTIR) results indicated that the mechanism of inhibition is an absorption process through the functional groups present in OS molecules. The adsorption of OS onto the J55 steel surface followed the Langmuir adsorption model. Scanning electron microscopy (SEM), energy-dispersive X-ray spectra (EDS) analysis, and atomic force microscopy (AFM) confirm the formation of an adsorbed protective film of the OS molecules on the J55 steel surface. Quantum chemical calculations performed by density functional theory (DFT) on the major phytochemicals present in the OS root extract supported the experimental results and explained the adsorption behavior of the extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.J. Kalfayan, Production enhancement with acid stimulation, 2nd edn. (PennWell, 2008)

  2. C. Crowe, J. Masmonteil, R. Thomas, Oilfield Rev 4, 22 (1992)

    Google Scholar 

  3. Schlumberger, Reservoir stimulation, 3rd edn. (John Wiley & Sons, 2000)

  4. M.H. Sliem, N.M. El Basiony, E.G. Zaki, M.A. Sharaf, A.M. Abdullah, Corrosion inhibition of mild steel in sulfuric acid by a newly synthesized Schiff base: an electrochemical, DFT, and Monte Carlo simulation study. Electroanalysis 32(12), 3145–3158 (2020)

    Article  CAS  Google Scholar 

  5. N.B. Iroha, E.E. Oguzie, G.N. Onuoha, A.I. Onuchukwu, 16th Inter. Corros. Congr., Beijing, China, 126 (2005)

  6. E. Berdimurodov, A. Kholikov, K. Akbarov, G. Xu, A.M. Abdullah, M. Hosseini, New anti-corrosion inhibitor (3ar,6ar)-3a,6a-di-p-tolyltetrahydroimidazo[4,5-d]imidazole-2,5(1 h,3h)-dithione for carbon steel in 1 M HCl medium: gravimetric, electrochemical, surface and quantum chemical analyses. Arab. J. Chem. 13(10), 7504–7523 (2020)

    Article  CAS  Google Scholar 

  7. Y.L. Lv, F.Y. Kong, L. Zhou, Y.X. Hu, Q. Wang, Y.Q. Wang, X. Li, 1, 10-Phenanthroimidazole derivatives as efficient corrosion inhibitors for mild steel in 1 M HCl: synthesis, gravimetric, electrochemical and theoretical investigation. J. Mol. Struct. 129746 (2020). https://doi.org/10.1016/j.molstruc.2020.129746

  8. G. Bahlakeh, B. Ramezanzadeh, A. Dehghani, M. Ramezanzadeh, Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: Detailed experimental and electronic/atomic level computational explorations. J. Mol. Liq. 283, 174–195 (2019)

    Article  CAS  Google Scholar 

  9. A. Saxena, D. Prasad, R. Haldhar, Investigation of corrosion inhibition effect and adsorption activities of Cuscuta reflexa extract for mild steel in 0.5 M H2SO4. Bioelectrochemistry 124, 156–164 (2018)

    Article  CAS  Google Scholar 

  10. H. Gerengi, H.I. Sahin, Schinopsis lorentziiExtract As a Green Corrosion Inhibitor for Low Carbon Steel in 1 M HCl Solution. Ind. Eng. Chem. Res. 51, 780–787 (2012)

    Article  CAS  Google Scholar 

  11. B. Ngouné, M. Pengou, A.M. Nouteza, C.P. Nanseu-Njiki, E. Ngameni, Performances of alkaloid extract from Rauvolfia macrophylla Stapf toward corrosion inhibition of C38 steel in acidic media. ACS Omega 4, 9081–9091 (2019)

    Article  CAS  Google Scholar 

  12. A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. J. Mol. Liq. 282, 366–384 (2019)

    Article  CAS  Google Scholar 

  13. A.O. James, N.B. Iroha, IOSR J. Appl. Chem. 12(2), 01 (2019)

    CAS  Google Scholar 

  14. N.B. Iroha, N.J. Maduelosi, IOSR-JAC 13, 30 (2020)

    CAS  Google Scholar 

  15. O.K. Abiola, A.O. James, The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corros. Sci. 52, 661–664 (2010)

    Article  CAS  Google Scholar 

  16. E.E. Oguzie, C.K. Enenebeaku, C.O. Akalezi, S.C. Okoro, A.A. Ayuk, E.N. Ejike, Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. J. Colloid Interface Sci. 349, 283–292 (2010)

    Article  CAS  Google Scholar 

  17. N.B. Iroha, N.A. Madueke, Effect of Triumfetta rhomboidea leaves extract on the corrosion resistance of carbon steel in acidic environment. Chem. Sci. Int. J. 25, 1–9 (2018)

    Article  CAS  Google Scholar 

  18. O.A. Adeoluwa, A.O. Aderibigbe, A.G. Drug Res. (Stuttg) 65, 306–311 (2015)

    CAS  Google Scholar 

  19. O.A. Adeoluwa, A.O. Aderibigbe, E.T. Olonode, Antinociceptive property of Olax subscorpioidea Oliv (Olacaceae) extract in mice. J. Ethnopharmacol. 156, 353–357 (2014)

    Article  Google Scholar 

  20. I.T. Gbadamosi, L.A. Raji, A.A. Oyagbemi, T.O. Omobowale, Afr. J. Biomed. Res. 20, 293–299 (2017)

    Google Scholar 

  21. C. Verma, L.O. Olasunkanmi, I.B. Obot, E.E. Ebenso, M.A. Quraishi, 2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies. RSC Adv. 6, 53933–53948 (2016)

    Article  CAS  Google Scholar 

  22. N.B. Iroha, N.A. Madueke, V. Mkpenie, B.T. Ogunyemi, L.B. Nnanna, S. Singh, E.D. Akpan, E.E. Ebenso, Experimental, adsorption, quantum chemical and molecular dynamics simulation studies on the corrosion inhibition performance of Vincamine on J55 steel in acidic medium. J. Mol. Struct. 129533 (2020). https://doi.org/10.1016/j.molstruc.2020.129533

  23. N.B. Iroha, O. Akaranta, Experimental and surface morphological study of corrosion inhibition of N80 carbon steel in HCl stimulated acidizing solution using gum exudate from Terminalia Mentaly. SN Appl. Sci. 2, 1514 (2020)

    Article  CAS  Google Scholar 

  24. K.F. Khaled, O.A. Elhabib, A. El-mghraby, O.B. Ibrahim, A.M. Magdy Ibrahim, J. Mater. Environ. Sci. 1, 139 (2010)

    CAS  Google Scholar 

  25. G. Achary, H.P. Sachin, Y.N. Arthola, T.V. Venkatesha, The corrosion inhibition of mild steel by 3-formyl-8-hydroxy quinoline in hydrochloric acid medium. Mater. Chem. Phys. 107, 44–50 (2008)

    Article  CAS  Google Scholar 

  26. N.B. Iroha, L.A. Nnanna, J. Mater. Environ. Sci. 10, 898 (2019)

    CAS  Google Scholar 

  27. C. Verma, L.O. Olasunkanmi, I.B. Obot, E.E. Ebenso, M.A. Quraishi, 5-Arylpyrimido-[4,5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Adv. 6, 15639–15654 (2016)

    Article  CAS  Google Scholar 

  28. N.B. Iroha, N.J. Maduelosi, Chem. Int. 6, 267 (2020)

    CAS  Google Scholar 

  29. J. Haque, V. Srivastava, C. Verma, H. Lgaz, R. Salghi, M.A. Quraishi, N-Methyl-N,N,N-trioctylammonium chloride as a novel and green corrosion inhibitor for mild steel in an acid chloride medium: electrochemical, DFT and MD studies. New J. Chem. 41, 13647–13662 (2017). https://doi.org/10.1039/c7nj02254a

    Article  CAS  Google Scholar 

  30. N.J. Maduelosi, N.B. Iroha, Journal of Bio- and Tribo-Corrosion 7(6) (2021). https://doi.org/10.1007/s40735-020-00441-z

  31. L. Tang, X. Li, Y. Si, G. Mu, G. Liu, The synergistic inhibition between 8-hydroxyquinoline and chloride ion for the corrosion of cold rolled steel in 0.5M sulfuric acid. Mater. Chem. Phys. 95, 29–38 (2006)

    Article  CAS  Google Scholar 

  32. D.K. Yadav, M.A. Quraishi, Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 51, 8194–8210 (2012)

    Article  CAS  Google Scholar 

  33. D.S. Chauhan, M.A. Quraishi, A.A. Sorour, S.K. Saha, P. Banerjee, Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Adv. 9, 14990–15003 (2019)

    Article  CAS  Google Scholar 

  34. N.B. Iroha, R.A. Ukpe, Communication in Physical Sciences. 5, 246–256 (2020)

    Google Scholar 

  35. G. Ji, P. Dwivedi, S. Sundaram, R. Prakash, Inhibitive effect of Chlorophytum borivilianum root extract on mild steel corrosion in HCl and H2SO4 solutions. Ind. Eng. Chem. Res. 52, 10673–10681 (2013)

    Article  CAS  Google Scholar 

  36. L. Larabi, Y. Harek, M. Traisnel, A. Mansri, Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl. J. Appl. Electrochem. 34, 833–839 (2004)

    Article  CAS  Google Scholar 

  37. M. Elayyachy, A. El Idrissi, B. Hammouti, New thio-compounds as corrosion inhibitor for steel in 1M HCl. Corros. Sci. 48, 2470–2479 (2006)

    Article  CAS  Google Scholar 

  38. A. Popova, M. Christov, Evaluation of impedance measurements on mild steel corrosion in acid media in the presence of heterocyclic compounds. Corros. Sci. 48, 3208–3221 (2006)

    Article  CAS  Google Scholar 

  39. E. Naderi, A.H. Jafari, M. Ehteshamzadeh, M.G. Hosseini, Effect of carbon steel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by EIS. Mater. Chem. Phys. 115, 852–858 (2009)

    Article  CAS  Google Scholar 

  40. K.F. Khaled, Experimental and computational investigations of corrosion and corrosion inhibition of iron in acid solutions. J. Appl. Electrochem. 41, 277–287 (2011)

    Article  CAS  Google Scholar 

  41. P. Roy, P. Karfa, U. Adhikari, D. Sukul, Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: effect of intramolecular synergism. Corros. Sci. 88, 246–253 (2014)

    Article  CAS  Google Scholar 

  42. C. Verma, A. Singh, G. Pallikonda, M. Chakravarty, M.A. Quraishi, I. Bahadur, E.E. Ebenso, Aryl sulfonamidomethylphosphonates as new class of green corrosion inhibitors for mild steel in 1M HCl: Electrochemical, surface and quantum chemical investigation. J. Mol. Liq. 209, 306–319 (2015)

    Article  CAS  Google Scholar 

  43. V. Srivastava, D.S. Chauhan, P.G. Joshi, V. Maruthapandian, A.A. Sorour, M.A. Quraishi, Chemistry Select 3, 1990 (2018)

    CAS  Google Scholar 

  44. J. Haque, V. Srivastava, D.S. Chauhan, H. Lgaz, M.A. Quraishi, Microwave-induced synthesis of chitosan Schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach. ACS Omega 3, 5654–5668 (2018)

    Article  CAS  Google Scholar 

  45. A.Y. El-Etre, Inhibition of aluminum corrosion using Opuntia extract. Corros. Sci. 45, 2485–2495 (2003)

    Article  CAS  Google Scholar 

  46. B. Ramaganthan, M. Gopiraman, L.O. Olasunkanmi, M.M. Kabanda, S. Yesudass, I. Bahadur, A.S. Adekunle, I.B. Obote, E.E. Ebenso, Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies. RSC Adv. 5, 76675–76688 (2015)

    Article  CAS  Google Scholar 

  47. P. Singh, E.E. Ebenso, L.O. Olasunkanmi, I. Obot, M. Quraishi, J. Phys. Chem. C 120, 3408–3419 (2016)

    Article  CAS  Google Scholar 

  48. L. Herrag, B. Hammouti, S. Elkadiri, A. Aouniti, C. Jama, H. Vezin, Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corros. Sci. 52, 3042–3051 (2010)

    Article  CAS  Google Scholar 

  49. B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, Y. Chen, Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 78, 260–268 (2014)

    Article  CAS  Google Scholar 

  50. N.V. Likhanova, M.A. Domínguez-Aguilar, O. Olivares-Xometl, N. Nava-Entzana, E. Arce, H. Dorantes, The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros. Sci. 52, 2088–2097 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nkem B. Iroha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, A.O., Iroha, N.B. New green inhibitor of Olax subscorpioidea root for J55 carbon steel corrosion in 15% HCl: theoretical, electrochemical, and surface morphological investigation. emergent mater. 5, 1119–1131 (2022). https://doi.org/10.1007/s42247-021-00161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00161-1

Keywords

Navigation