Skip to main content
Log in

Evaluation of new ion exchange resins for hardness removal from boiler feedwater

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Ion exchange is widely used for the removal of selected ions from water streams. Within oil & gas, one application is boiler feedwater treatment to remove hardness, i.e. calcium and magnesium. Weak acid cation (WAC) resins are typically used and advances in material science, polymer chemistry and manufacturing methods have resulted in new resins being introduced to the market. These new resins can lower operating costs through higher capacity, reduced chemical consumption during regeneration or improved physical properties.

In this research, the performance of a WAC resin used for boiler feedwater treatment in oil & gas operations (resin A) was compared with two new commercial resins (resins B & C).

The results indicated that resin B had the highest operational capacity in comparison to A & C. During regeneration, resin B was the most efficient with 0.43 meq of calcium and magnesium removed from the feed per meq of HCl consumed during regeneration, slightly higher than resins A & C at 0.38 and 0.30 meq/meq respectively. All three resins demonstrated preferential affinity for calcium over magnesium. As breakthrough approached, previously adsorbed magnesium ions were released back to the water resulting in a spike in effluent magnesium that was ≈3× higher than in the feed stream. In full-scale systems, breakthrough can be determined by measuring only the effluent magnesium concentration which can be more sensitive parameter than total hardness and/or calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.A. Clifford, Water Qual. Treat. 4, 561 (1999)

    Google Scholar 

  2. C.J. Brown, C.J. Brown, M. Sheedy, M. Sheedy, System 2 (2002)

  3. R.J. Jan, T.G. Reed Jr., SPE Prod. Engineeering (1992)

  4. Q. Jiang, J. Rentschler, R. Perrone, K. Liu, J. Membr. Sci. 431, 55 (2013)

    Article  CAS  Google Scholar 

  5. S. Adham, A. Hussain, J. Minier-Matar, A. Janson, R. Sharma, Desalination 440, 2 (2018)

    Article  CAS  Google Scholar 

  6. G.J. Millar, S.J. Couperthwaite, C.D. Moodliar, Renew. Sust. Energ. Rev. 57, 669 (2016)

    Article  CAS  Google Scholar 

  7. Y. Hu, T.H. Boyer, Water Res. 115, 40 (2017)

    Article  CAS  Google Scholar 

  8. J.N. Apell, T.H. Boyer, Water Res. 44, 2419 (2010)

    Article  CAS  Google Scholar 

  9. M. Arias-Paic, K.M. Cawley, S. Byg, F.L. Rosario-Ortiz, Water Res. 88, 981 (2016)

    Article  CAS  Google Scholar 

  10. J.A. Korak, R. Huggins, M. Arias-Paic, Water Res. 118, 141 (2017)

    Article  CAS  Google Scholar 

  11. A.M. Bergquist, J.K. Choe, T.J. Strathmann, C.J. Werth, Water Res. 96, 177 (2016)

    Article  CAS  Google Scholar 

  12. S. Ebrahimi, D.J. Roberts, Water Res. 88, 766 (2016)

    Article  CAS  Google Scholar 

  13. K.A. Landry, P. Sun, C.H. Huang, T.H. Boyer, Water Res. 68, 510 (2015)

    Article  CAS  Google Scholar 

  14. W. Beita-Sandí, T. Karanfil, Water Res. 124, 20 (2017)

    Article  Google Scholar 

  15. M.D. LeVan, G. Carta, C.M. Yon, Energy 16, 17 (1997)

    Google Scholar 

  16. D. Reichenberg, J. Am. Chem. Soc. 75, 589 (1953)

    Article  CAS  Google Scholar 

  17. G.E. Boyd, A.W. Adamson, L.S. Myers Jr., J. Am. Chem. Soc. 69, 2836 (1947)

    Article  CAS  Google Scholar 

  18. I.M. Abrams, J.R. Millar, React. Funct. Polym. 35, 7 (1997)

    Article  CAS  Google Scholar 

  19. Q. Li, L. Fu, Z. Wang, A. Li, C. Shuang, C. Gao, J. Clean. Prod. 165, 801 (2017)

    Article  CAS  Google Scholar 

  20. Y. Sun, P. Zuo, J. Luo, R.P. Singh, J. Environ. Sci. 54, 40 (2017)

    Article  Google Scholar 

  21. G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)

    Article  CAS  Google Scholar 

  22. S.N. Kasarova, N.G. Sultanova, C.D. Ivanov, I.D. Nikolov, Opt. Mater. (Amst) 29, 1481 (2007)

    Article  CAS  Google Scholar 

  23. H. M. F. Freundlich and others, J. Phys. Chem 57, 1100 (1906)

    Google Scholar 

  24. G.J. Millar, G.L. Miller, S.J. Couperthwaite, S. Papworth, Sep. Purif. Technol. 163, 79 (2016)

    Article  CAS  Google Scholar 

  25. H.C. Thomas, J. Am. Chem. Soc. 66, 1664 (1944)

    Article  CAS  Google Scholar 

  26. H.C. Thomas, Ann. N. Y. Acad. Sci. 49, 161 (1948)

    Article  CAS  Google Scholar 

  27. R.S. Juang, H.C. Kao, W. Chen, Sep. Purif. Technol. 49, 36 (2006)

    Article  CAS  Google Scholar 

  28. M. Kalaruban, P. Loganathan, W.G. Shim, J. Kandasamy, G. Naidu, T.V. Nguyen, S. Vigneswaran, Sep. Purif. Technol. 158, 62 (2016)

    Article  CAS  Google Scholar 

  29. S. Belaïd, G. Boiteux, P. Cassagnau, Rheol. Acta 52, 75 (2013)

    Article  Google Scholar 

  30. DOW Liquid Separations, March (2006)

  31. K.W. Pepper, D. Reichenberg, D.K. Hale, J. Chem. Soc. 3129 (1952)

  32. H.P. Gregor, F. Gutoff, J. Bregman, J. Colloid Sci. 6, 245 (1951)

    Article  CAS  Google Scholar 

  33. H. Ashjian, Q. N. Le, D. O. Marler, J. Shim, and S. S. Wong, (1991)

  34. Y. Marcus, Chem. Rev. 88, 1475 (1988)

    Article  CAS  Google Scholar 

  35. L.P. Mazur, T.A. Pozdniakova, D.A. Mayer, R.A.R. Boaventura, V.J.P. Vilar, Water Res. 90, 354 (2016)

    Article  CAS  Google Scholar 

  36. J.R. Couper, W.R. Penney, J.R. Fair, S.M. Walas, J.R. Couper, W.R. Penney, J.R. Fair, S.M. Walas, Chem. Process Equip, 529–559 (2012)

  37. V.J. Inglezakis, A. Zorpas, in Ion Exch. Technol. I Theory Mater, ed. by I. DR, M. Luqman. (Springer, Netherlands, 2012), pp. 121–161

    Google Scholar 

Download references

Acknowledgements

The research team would like to acknowledge Samir Gharfeh, Aida Rafat and Nabin Upadhyay for their feedback and contributions to the project, as well as the resin manufacturers for providing the resins used on this study.

This evaluation is a contribution to science and does not constitute an endorsement of any particular vendor’s resins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Adham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janson, A., Minier-Matar, J., Al-Shamari, E. et al. Evaluation of new ion exchange resins for hardness removal from boiler feedwater. emergent mater. 1, 77–87 (2018). https://doi.org/10.1007/s42247-018-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0006-0

Keywords

Navigation