Skip to main content
Log in

Theoretical and numerical research on effect of tension mechanisms in strip flatness electromagnetic control rolling mills

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To achieve stable rolling, the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied. Through the analysis of the rolling deformation zone, the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed. To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic, a three-dimensional rolling finite element (FE) model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill. Based on the model, the strip thickness characteristic, metal transverse flow, strip flatness state, and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values. The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a 0, a 2, a 4 :

Polynomial coefficients of loaded roll gap shape curve

B :

Strip width value (mm)

C x :

Strip crown

C w :

Electromagnetic control roll crown (μm)

C w2 :

Quadratic crown

C w4 :

Quartic crown

D w(x):

Worn roll profile

D v(x):

Variation of roll profile

E d :

Edge drop value

F :

Bending force (kN)

F r :

Rolling force (kN)

f :

Front slip value

g(x):

Loaded roll gap shape curve

H :

Inlet strip thickness (mm)

h :

Outlet strip thickness (mm)

Δh :

Single-pass reduction (mm)

Δh 1 :

Equivalent reduction of upper working roll (mm)

Δh 2 :

Equivalent reduction of lower working roll (mm)

h c :

Strip thickness of middle point of strip

h D :

Strip edge thickness

h x :

Strip thickness of side marking point

h xd :

Strip thickness of marking point of transmission side

h xw :

Strip thickness of marking point of operating side

h γ 1 :

Strip thickness of neutral surface of back slip zone (mm)

h γ 2 :

Strip thickness of neutral surface of front slip zone (mm)

l :

Length of rolling deformation zone (mm)

p :

Contact stress on surface of contact zone (MPa)

p(x):

Distribution function of rolling force (MPa)

R 1 :

Roll radius of upper working roll (mm)

R 2 :

Roll radius of lower working roll (mm)

T F :

Front tension setting value (MPa)

T P :

Post tension setting value (MPa)

V 0 :

Linear velocity of lower working roll (m s−1)

V 1 :

Exit velocity of rolled piece (m s−1)

V 2 :

Entrance velocity of rolled piece (m s−1)

V 3 :

Linear velocity of upper working roll (m s1)

V γ 1 :

Metal flow velocity on neutral surface of back slip zone (m s−1)

V γ 2 :

Metal flow velocity on neutral surface of front slip zone (m s−1)

x :

Strip width coordinate, [− B/2, B/2]

ΣX :

Resultant force in horizontal direction

ΣX F :

Sum of horizontal forces in front slip zone

ΣX C :

Sum of horizontal forces in cross shear zone

ΣX B :

Sum of horizontal forces in back slip zone

ΣY :

Resultant force in vertical direction

ΣY F :

Sum of vertical forces in front slip zone

ΣY C :

Sum of vertical forces in cross shear zone

ΣY B :

Sum of vertical forces in back slip zone

α 1 :

Bite angle of upper working roll (°)

α 2 :

Bite angle of lower working roll (°)

β :

Back slip value

γ 1 :

Neutral angle of upper working roll (°)

γ 2 :

Neutral angle of lower working roll (°)

τ :

Shear stress on surface of contact zone (MPa)

μ :

Friction coefficient

σ 1 :

Front tension preset value

σ 2 :

Post tension preset value

References

  1. T. Yang, Q. Chen, Y. Feng, Y. Hai, F. Du, Int. J. Adv. Manuf. Technol. 120 (2022) 5741–5754.

    Article  Google Scholar 

  2. Y. Zheng, T. Yang, T. Qu, F. Du, Z. Xu, Iron and Steel 56 (2021) No. 5, 80–90+112.

  3. T. Yang, Y. Bai, Z. Lei, Z. Xu, F. Du, Iron and Steel 57 (2022) No. 5, 81–89.

    Google Scholar 

  4. M. Borghesi, G. Chiozzi, in: Proceedings of International Conference on Steel Rolling, ICSR Tokyo, Japan, 1980, pp. 760–771.

  5. M. Okado, T. Arimura, F. Fujita, H. Kuwamoto, Y. Sakaguchi, M. Mikami, Iron and Steel Engineer 59 (1982) 25–29.

    Google Scholar 

  6. T. Tarnopolskaya, W.Y.D. Yuen, ISIJ Int. 45 (2005) 1316–1321.

    Article  Google Scholar 

  7. M.S. Dyshel’, Int. Appl. Mech. 42 (2006) 589–592.

  8. X. Wang, Y. Liu, X. Zhao, X. Jin, Steel Rolling 23 (2007) No. 6, 12–14.

    Google Scholar 

  9. E.A. Maksimov, Metallurgist 54 (2011) 753–757.

    Article  Google Scholar 

  10. S. Abdelkhalek, H. Zahrouni, N. Legrand, M. Potier-Ferry, Int. J. Mech. Sci. 104 (2015) 126–137.

    Article  Google Scholar 

  11. E.A. Garber, A.E. Aleshin, S.S. Degtev, A.I. Traino, Russ. Metall. 2016 (2016) 1108–1111.

    Article  Google Scholar 

  12. Z.K. Ren, H. Xiao, C. Yu, J. Wang, Procedia Eng. 207 (2017) 1326–1331.

    Article  Google Scholar 

  13. Y.M. Hwang, G.Y. Tzou, J. Mater. Eng. Perform. 2 (1993) 597–606.

    Article  Google Scholar 

  14. Y.M. Hwang, G.Y. Tzou, J. Mater. Eng. Perform. 4 (1995) 265–274.

    Article  Google Scholar 

  15. Y.M. Hwang, G.Y. Tzou, Int. J. Mech. Sci. 39 (1997) 289–303.

    Article  Google Scholar 

  16. S.H. Zhang, D.W. Zhao, C.R. Gao, G.D. Wang, Int. J. Mech. Sci. 65 (2012) 168–176.

    Article  Google Scholar 

  17. M. Salimi, M. Kadkhodaei, J. Mater. Process. Technol. 150 (2004) 215–222.

    Article  Google Scholar 

  18. Y. Feng, W. Liu, T. Yang, F. Du, J. Sun, Int. J. Adv. Manuf. Technol. 104 (2019) 2925–2937.

    Article  Google Scholar 

  19. W. Liu, Y. Feng, T. Yang, F. Du, J. Sun, Appl. Therm. Eng. 145 (2018) 277–286.

    Article  Google Scholar 

  20. Y. Feng, W. Liu, T. Yang, F. Du, J. Sun, Metall. Res. Technol. 116 (2019) 405.

    Article  Google Scholar 

  21. T. Yang, Y. Wang, J. Liu, F. Du, Z. Xu, Int. J. Adv. Manuf. Technol. 114 (2021) 1065–1074.

    Article  Google Scholar 

  22. T. Yang, J. Liu, H. Zhou, Z. Xu, F. Du, Int. J. Adv. Manuf. Technol. 116 (2021) 403–415.

    Article  Google Scholar 

  23. M. Stolbchenko, O. Grydin, A. Samsonenko, V. Khvist, M. Schaper, Forsch. Im Ingenieurwesen 78 (2014) 121–130.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Natural Science Foundation of Hebei Province of China (Grant No. E2021203129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-quan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Ts., Yuan, Th., Sun, Wq. et al. Theoretical and numerical research on effect of tension mechanisms in strip flatness electromagnetic control rolling mills. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01195-5

Keywords

Navigation