Skip to main content
Log in

Anti-saturation fault-tolerant adaptive torsional vibration control with fixed-time prescribed performance for rolling mill main drive system

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system (RMMDS) was investigated, which is affected by control input saturation, actuator faults, sensor measurement errors, and parameter perturbations. First, we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS, translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system. Then, an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed, taking into account the presence of control input saturation, actuator faults, sensor measurement errors, and parameter perturbations. Based on the established mathematical model, an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method. According to the error transformation model, a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint. Finally, numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.X. Cui, Y. Peng, J. Wang, J. Iron Steel Res. Int. 30 (2023) 112–125.

    Article  Google Scholar 

  2. X.Q. Yan, J.B. Qi, X.X. Wang, J. Iron Steel Res. Int. 26 (2019) 697–703.

    Article  Google Scholar 

  3. Y.J. Liu, S. Wang, J.B. Qi, X.Q. Yan, J. Iron Steel Res. Int. 30 (2023) 1792–1802.

    Article  Google Scholar 

  4. W.W. Lin, J.J. Wang, B.Y. Ren, J. Yu, X.L. Wang, T.H. Zhang, Construct. Build. Mater. 316 (2023) 125839.

    Article  Google Scholar 

  5. M. Müller, K. Prinz, A. Steinboeck, F. Schausberger, A. Kugi, Contr. Eng. Pract. 103 (2020) 104584.

    Article  Google Scholar 

  6. J. Sun, F. Hou, Y.J. Hu, L.J. Wang, H.Y. Jin, W. Peng, X.J. Li, D.H. Zhang, J. Iron Steel Res. Int. 30 (2023) 277–292.

    Google Scholar 

  7. R. Furlan, F.A. Cuzzola, T. Parisini, Contr. Eng. Pract. 16 (2008) 214–224.

    Article  Google Scholar 

  8. N.Y. Lu, B. Jiang, X.F. Meng, H.P. Zhao, IEEE Trans. Syst. Man Cybern. Syst. 50 (2017) 137–148.

    Google Scholar 

  9. C.F. Zhang, K.X. Peng, J. Dong, Expert Sys. Appl. 167 (2021) 114166.

    Article  Google Scholar 

  10. S. Yin, B. Xiao, S.X. Ding, D. Zhou, IEEE Trans. Ind. Electron. 63 (2016) 3311–3320.

    Article  Google Scholar 

  11. Z.Q. Yu, Y.M. Zhang, B. Jiang, C.Y. Su, J. Fu, Y. Jin, T.Y. Chai, Mech. Sys. Signal Process. 153 (2021) 107406.

    Article  Google Scholar 

  12. P. Shi, X. Wang, X. Meng, M. He, Y. Mao, Z. Wang, IEEE Trans. Power Electron. 38 (2023) 3676–3688.

    Article  ADS  Google Scholar 

  13. Y. Wang, Z.S. Wang, IEEE Trans. Circuits Syst. II Exp. Briefs 69 (2021) 154–158.

    Google Scholar 

  14. Y. Wang, J. Xia, Z. Wang, H. Shen, Appl. Math. Comput. 369 (2020) 124841.

    Article  MathSciNet  Google Scholar 

  15. X.W. Bu, D.Z. Wei, G.J. He, Int. J. Robust Nonlinear Control 30 (2020) 2752–2776.

    Article  Google Scholar 

  16. C. Qian, L. Zhang, C. Hua, Int. J. Contr. Autom. Syst. 19 (2020) 1264–1272.

    Article  Google Scholar 

  17. C. Qian, C.C. Hua, L.L. Zhang, Z.H. Bai, J. Franklin Ins. 357 (2020) 12886–12903.

    Article  Google Scholar 

  18. C.C. Hua, P.J. Ning, K. Li, IEEE Trans. Autom. Control 67 (2021) 6159–6166.

    Google Scholar 

  19. J. Tan, Y.F. Dong, P.Y. Shao, G.M. Qu, Aeros. Sci. Technol. 120 (2022) 107264.

    Article  Google Scholar 

  20. L. Zhao, J.P. Yu, Q.G. Wang, IEEE Trans. Neural Netw. Learn. Syst. 32 (2020) 1474–1485.

    Google Scholar 

  21. Y. Zhao, Y. Zhou, P. Huang, G. Chen, IEEE Trans. Autom. Control 67 (2022) 4498–4513.

    Google Scholar 

  22. B. Xu, IEEE Trans. Syst. Man Cybern. Syst. 47 (2017) 161–170.

    Google Scholar 

  23. W. Wang, B. Xie, Z.Y. Zuo, H.J. Fan, IEEE Trans. Ind. Electron. 66 (2018) 3752–3762.

    Google Scholar 

  24. J. Na, Y.B. Huang, Q.Q. Pei, X. Wu, G.B. Gao, G. Li, IEEE/ASME Trans. Mechatronics 25 (2019) 779–791.

    Article  Google Scholar 

  25. L.N. Bikas, G.A. Rovithakis, IEEE Trans. Autom. Control 68 (2023) 96–107.

    Google Scholar 

Download references

Acknowledgements

This work is supported by Central Government to Guide local scientific and Technological Development of Hebei Province (No. 216Z1902G), Major Program of National Natural Science Foundation of China (U20A20332), Natural Science Foundation of Hebei Province (A2022203024), and Provincial Key Laboratory Performance Subsidy Project (22567612H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests which could influence this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Du, C., Zhang, C. et al. Anti-saturation fault-tolerant adaptive torsional vibration control with fixed-time prescribed performance for rolling mill main drive system. J. Iron Steel Res. Int. 31, 660–669 (2024). https://doi.org/10.1007/s42243-023-01095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01095-0

Keywords

Navigation