Skip to main content
Log in

CO2 corrosion of X80 steel welded joints under micro-turbulence induced by welding reinforcement height

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation. The welding reinforcement height (WRH) can induce locally micro-turbulent flow field, which aggravates local corrosion of welded joints. A high wall shear stress (WSS) experimental setup was established to conduct the online electrochemical corrosion test. The influence of WRH sizes on local corrosion of welded joints was studied at different flow rates. The electrochemical signals of the local corrosion of X80 welded joints at different flow rates were monitored in real time using electrochemical impedance spectroscopy and wire beam microelectrode. In addition, the corrosion products composition and properties were analyzed. The results show that the micro-turbulent flow fields induced by the WRHs can enhance ion mass transfer near the welded joints. The corrosion products on the WRH surface also present different microscopic morphologies at different flow rates. In strong flow fields, the locally enhanced WSS can peel off the dense corrosion product partially, leading to the electrochemical distribution of large cathode and small anode, which accelerates the occurrence and development processes of the local corrosion of welded joints. The scientific guidelines for the corrosion protection of long-distance oil and gas pipelines can be potentially provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C :

Capacitor

C 1 :

Actual concentration of Fe2+ at interface of corrosion product and solution

\(C_{1\varepsilon }\) :

Constant, 1.42

\(C_{2\varepsilon }\) :

Constant, 1.68

\(C_{3\varepsilon }\) :

Constant related to directions of main stream and gravity

C b :

Concentration of Fe2+ in main solution

\(C_{{{\text{b}},{\text{H}}^{ + } }}\) :

\({\text{H}}^{ + }\) concentration in main solution

C e :

Constants in stable solution system

C 0 :

Actual concentration of FeCO3 at junction of metal and corrosion product

\(C_{{{\text{s}},{\text{H}}^{ + } }}\) :

\({\text{H}}^{ + }\) concentration in reaction interface

\(C_{\mu }\) :

Constant, 0.0845

\(d\) :

Constant, 0.5

\(D_{{{\text{H}}^{ + } }}\) :

\({\text{H}}^{ + }\) diffusion coefficient

\(D_{{{\text{Fe}}^{2 + } }}\) :

Diffusion coefficient of corrosion product

\(F\) :

Faraday constant

\({i}_{{\text{lim}},{{\text{H}^{+}}}}\) :

Limit current density

\(g\) :

Gravitational acceleration, 9.8 m/s2

\(G_{k}\) :

Turbulent kinetic energy due to average velocity gradient, m/s2

\(G_{{\text{b}}}\) :

Turbulent kinetic energy due to buoyancy, m/s2

\(k\) :

Turbulent kinetic energy, m/s2

\(k_{{{\text{H}}^{ + } }}\) :

Mass transfer coefficient

\(K_{{\text{r}}}\) :

Corrosion rate constant

\(L\) :

Inductance, H cm2

\(l\) :

Characteristic length

\(n\) :

Coefficient of dispersion

\(n_{\text{dl}}\) :

Coefficient dispersion of double-layer capacitor

\(n_{\text{pf}}\) :

Coefficient dispersion of corrosion product

\(p\) :

Pressure, Pa

\(Q_{{{\text{dl}}}}\) :

Constant phase element of double-layer capacitor, μF/cm2

\(Q_{{{\text{pf}}}}\) :

Constant phase element of corrosion product, μF/cm2

\(R\) :

Radius of welding reinforcement height region, mm

\(R_{{{\text{ct}}}}\) :

Charge transfer resistance, Ω cm2

Re :

Reynolds number

\(R_{{\text{L}}}\) :

Inductance resistance, Ω cm2

\(R_{{{\text{pf}}}}\) :

Corrosion product resistance, Ω cm2

\(R_{{\text{s}}}\) :

Solution resistance, Ω cm2

\(R_{\varepsilon }\) :

Correction term

Sc :

Schmidt number

Sh :

Sherwood number

\(S_{k}\) :

User-defined source term

\(S_{{\text{p}}}\) :

Particle interaction on fluid, Pa

\(S_{\varepsilon }\) :

User-defined source term

\(T\) :

Solution temperature, °C

\(t\) :

Time, h

\(u\) :

Liquid velocity, m/s

\(\vec{u}\) :

Velocity vector

\(u_{i}\) :

Velocity in i direction

\(x_{i}\) :

x coordinate component

\(x_{j}\) :

x coordinate component

\(Z^{\prime}\) :

Real part of impedance

\(Z^{\prime\prime}\) :

Imaginary part of impedance

\(\left| Z \right|\) :

Impedance magnitude

\(\alpha_{k}\) :

Effective Prandtl number of reciprocal of k, 1.39

\(\alpha_{\varepsilon }\) :

Effective Prandtl number of reciprocal of \(\varepsilon\), 1.39

β :

Constant, 0.012

\(\delta\) :

Deposited corrosion product thickness

\(\delta_{{\text{l}}}\) :

Thickness of effective concentration boundary layer

\(\varepsilon\) :

Turbulent dissipation rate, m2/s3

η :

User-defined source term

\(\eta_{0}\) :

Constant term, 4.38

\(\theta\) :

Porosity

μ :

Solution dynamic viscosity, Pa s

\(\mu_{{{\text{eff}}}}\) :

Effective kinematic viscosity of fluid, Pa s

ν :

Solution kinematic viscosity, Pa s

\(\rho\) :

Liquid density, kg/m3

\(\overline{\tau }\) :

Stress tensor, Pa

References

  1. Z. Tan, L. Yang, D. Zhang, Z. Wang, F. Cheng, M. Zhang, Y. Jin, J. Mater. Sci. Technol. 49 (2020) 186–201.

    Google Scholar 

  2. Z. Tang, D. Zhang, L. Yang, Z. Wang, F. Cheng, M. Zhang, Y. Jin, S. Zhu, Tribol. Int. 146 (2020) 106145.

    Google Scholar 

  3. Z.B. Wang, Y.G. Zheng, J. Pipeline Sci. Eng. 1 (2021) 63–73.

    Google Scholar 

  4. S.T. Kim, I.S. Lee, J.S. Kim, S.H. Jang, Y.S. Park, K.T. Kim, Y.S. Kim, Corros. Sci. 64 (2012) 164–173.

    Google Scholar 

  5. X. Dou, Z. He, X. Zhang, Y. Liu, R. Liu, Z. Tan, D. Zhang, Y. Li, Colloids Surf. A 665 (2023) 131225.

    Google Scholar 

  6. B.O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, A. Davoodi, Corros. Sci. 154 (2019) 49–60.

    Google Scholar 

  7. R. Liu, Y. Liu, D. Zhang, Frontiers Mater. 9 (2022) 910319.

    Google Scholar 

  8. D. Zhang, L. Yang, Z. Tan, S. Xing, S. Bai, E. Wei, X. Tang, Y. Jin, Experiment. Therm. Fluid Sci. 124 (2021) 110333.

    Google Scholar 

  9. L. Yang, D. Zhang, H. Fan, Z. Tan, S. Xing, X. Guan, X. Jiang, J. Nat. Gas Sci. Eng. 106 (2022) 104745.

    Google Scholar 

  10. K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, B. Hof, Science 333 (2011) 192–196.

    Google Scholar 

  11. J.H. Kim, I.S. Kim, H.S. Chung, Canad. Metall. Q. 42 (2013) 253–260.

    Google Scholar 

  12. R.G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, The Influence of Mass Transport on Electrochemical Processes, CRC Press, Boca Raton, USA, 2002.

    Google Scholar 

  13. Y. Li, J. Li, K. Wang, L. Song, C. Du, R. He, J. Mater. Eng. Perform. 27 (2018) 6636–6647.

    Google Scholar 

  14. G.A. Zhang, D. Liu, Y.Z. Li, X.P. Guo, Corros. Sci. 120 (2017) 107–120.

    Google Scholar 

  15. S. Nesic, Energy Fuels 26 (2012) 4098–4111.

    Google Scholar 

  16. S. Nešić, G.T. Solvi, J. Enerhaug, Corrosion 51 (1995) 773–787.

    Google Scholar 

  17. G. Zhang, L. Zeng, H. Huang, X. Guo, Corros. Sci. 77 (2013) 334–341.

    Google Scholar 

  18. L. Wei, X. Pang, K. Gao, Corros. Sci. 136 (2018) 339–351.

    Google Scholar 

  19. M. Javidi, S. Bekhrad, Eng. Fail. Anal. 89 (2018) 46–56.

    Google Scholar 

  20. J.L. Mora-Mendoza, S. Turgoose, Corros. Sci. 44 (2002) 1223–1246.

    Google Scholar 

  21. J. Zhang, Z.L. Wang, Z.M. Wang, X. Han, Corros. Sci. 65 (2012) 397–404.

    Google Scholar 

  22. M. Gao, X. Pang, K. Gao, Corros. Sci. 53 (2011) 557–568.

    Google Scholar 

  23. W. Li, B. Pots, X. Zhong, S. Nešić, Corros. Sci. 126 (2017) 208–226.

    Google Scholar 

  24. Z.W. Tan, Z.B. Wang, S.Y. Bai, D.L. Zhang, S.Z. Zhang, F. Cheng, S.H. Xing, Y.H. Jin, J. Iron Steel Res. Int. 29 (2022) 1026–1038.

    Google Scholar 

  25. A. Li, Z. Wang, L. Zhu, Z. Wang, J. Shi, W. Yang, Particuology 63 (2022) 83–94.

    Google Scholar 

  26. E.U. Hartge, L. Ratschow, R. Wischnewski, J. Werther, Particuology 7 (2009) 283–296.

    Google Scholar 

  27. Y. Xu, Q. Zhang, H. Chen, Y. Huang, J. Mater. Res. Technol. 25 (2023) 6550–6566.

    Google Scholar 

  28. L. Li, Y. Qiao, L. Zhang, A. Ma, E.F. Daniel, R. Ma, J. Chen, Y. Zheng, Int. J. Miner. Metall. Mater. 30 (2023) 1338–1352.

    Google Scholar 

  29. Li, L, Y.X. Qiao, L.M. Zhang, C.T. Li, Z. Liu, R.Y. Ma, L.L. Yang, J.Y. Li, Y.G. Zheng, Ultrason. Sonochem. 98 (2023) 106498.

    Google Scholar 

  30. Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 84 (2014) 165–171.

    Google Scholar 

  31. H.J. Kim, K.H. Kim, Nucl. Eng. Des. 301 (2016) 183–188.

    Google Scholar 

  32. G.A. Zhang, M.X. Lu, Y.B. Qiu, X.P. Guo, Z.Y. Chen, J. Electrochem. Soc. 159 (2012) C393–C402.

    Google Scholar 

  33. F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Corros. Sci. 52 (2010) 509–517.

    Google Scholar 

  34. A. Kahyarian, S. Nesic, J. Electrochem. Soc. 166 (2019) C3048–C3063.

    Google Scholar 

  35. Z.Y. Hu, D.L. Duan, S.H. Hou, X.J. Ding, S. Li, J. Mater. Sci. Technol. 31 (2015) 1274–1281.

    Google Scholar 

  36. G.A. Zhang, Y.F. Cheng, Corros. Sci. 51 (2009) 87–94.

    Google Scholar 

  37. D. Zheng, D. Che, Y. Liu, Corros. Sci. 50 (2008) 3005–3020.

    Google Scholar 

  38. R. Ghosh, M. Chinara, K. Godbole, K. Mondal, S. Mukherjee, J. Mater. Eng. Perform. (2023) https://doi.org/10.21203/rs.3.rs-2482803/v1.

    Article  Google Scholar 

  39. A. Kahyarian, M. Singer, S. Nesic, J. Nat. Gas Sci. Eng. 29 (2016) 530–549.

    Google Scholar 

  40. F.A. Abdulaleem, F.M. Al Habdan, M.E. El Dahshan, Key Eng. Mater. 20–28 (1991) 383–396.

    Google Scholar 

  41. B. Poulson, Corros. Sci. 30 (1990) 743–746.

    Google Scholar 

  42. M. Prasad, V. Gopika, A. Sridharan, S. Parida, Prog. Nucl. Energy 107 (2018) 205–214.

    Google Scholar 

  43. L.E. Sanchez-Caldera, P. Griffith, E. Rabinowicz, J. Eng. Gas Turbines Power 110 (1988) 180–184.

    Google Scholar 

  44. N.Y. Lee, S.G. Lee, K.H. Ryu, I.S. Hwang, Nucl. Eng. Des. 237 (2007) 761–767.

    Google Scholar 

  45. D.P. Wang, Characterization of the local mass transfer rate downstream of an orifice, Mc Master University, Hamilton, Canada, 2012.

Download references

Acknowledgements

This work was conducted with financial support from the National Natural Science Foundation of China (Nos. 52206199, 42176209, 51979282, and 41676071) and the Natural Science Foundation of Shandong Province (No. ZR2021MD064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-lei Zhang or Yan Li.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Xh., Li, B., He, Zh. et al. CO2 corrosion of X80 steel welded joints under micro-turbulence induced by welding reinforcement height. J. Iron Steel Res. Int. 31, 1015–1032 (2024). https://doi.org/10.1007/s42243-023-01091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01091-4

Keywords

Navigation