Skip to main content
Log in

Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Static recrystallization (SRX) behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions. The order of influence of deformation parameters on static recrystallization behaviors, from high to low, is followed by temperature, first-stage strain and strain rate. Meanwhile, the effect of holding time on static recrystallization behaviors is significantly controlled by temperature. In addition, with the increase in temperature from 1000 to 1200 °C, the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization (cSRX) to metadynamic recrystallization and cSRX, and finally to cSRX. The cSRX exists at all temperatures. This is because high stacking fault energy (56 mJ m−2) promotes the movement of dislocations, making the deformation mechanism of this steel is dominated by planar slip of dislocation. Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation. However, small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains, while the hindering effect decreases with the increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu, G. Qiao, Mater. Des. 69 (2015) 230–240.

    Article  CAS  Google Scholar 

  2. G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, G. Qiao, Mater. Des. 53 (2014) 662–672.

    Article  CAS  Google Scholar 

  3. J. Olsson, W. Wasielewska, Mater. Corros. 48 (1997) 791–798.

    Article  CAS  Google Scholar 

  4. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, V.S. Sarma, Mater. Des. 115 (2017) 262–275.

    Article  CAS  Google Scholar 

  5. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Amsterdam, Elsevier, 1995.

    Google Scholar 

  6. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.

    Article  CAS  Google Scholar 

  7. S. Ding, S.A. Khan, J. Yanagimoto, Mater. Sci. Eng. A 822 (2021) 141673.

    Article  CAS  Google Scholar 

  8. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238 (1997) 219–274.

    Article  Google Scholar 

  9. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  CAS  Google Scholar 

  10. B. Aashranth, D. Samantaray, M. Arvinth Davinci, S. Murugesan, U. Borah, S.K. Albert, A.K. Bhaduri, Mater. Charact. 136 (2018) 100–110.

    Article  CAS  Google Scholar 

  11. N. Bayat, G.R. Ebrahimi, A. Momeni, H.R. Ezatpour, Int. J. Miner. Metall. Mater. 25 (2018) 181–189.

    Article  CAS  Google Scholar 

  12. W. Zhang, J. Zhang, Y. Han, R. Liu, D.N. Zou, G.J. Qiao, J. Iron Steel Res. Int. 23 (2016) 151–159.

    Article  Google Scholar 

  13. B. Wallén, E. Alfonsson, Werkstoffe Und Korrosion 46 (1995) 347–353.

    Article  Google Scholar 

  14. Z.G. Song, E.X. Pu, J. Iron Steel Res. Int. 24 (2017) 743–749.

    Article  Google Scholar 

  15. T. Koutsoukis, A. Redjaïmia, G. Fourlaris, Solid State Phenom. 172–174 (2011) 493–498.

    Article  Google Scholar 

  16. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Mater. Charact. 152 (2019) 141–150.

    Article  CAS  Google Scholar 

  17. S. Zhang, Z. Jiang, H. Li, H. Feng, B. Zhang, J. Alloy. Compd. 695 (2017) 3083–3093.

    Article  CAS  Google Scholar 

  18. C. Lee, Y. Lee, C. Lee, S. Hong, Mater. Sci. Eng. A 733 (2018) 16–23.

    Article  CAS  Google Scholar 

  19. M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, P. Lejček, Mater. Sci. Eng. A 580 (2013) 217–226.

    Article  Google Scholar 

  20. D.D. Lu, J.F. Li, Y.J. Guo, G. Wang, R. Wu, P.C. Ma, Y.L. Chen, X.H. Zhang, W. You, R.F. Zhang, J. Alloy. Compd. 909 (2022) 164716.

    Article  CAS  Google Scholar 

  21. W. Huo, L. Hou, H. Cui, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 618 (2014) 244–253.

    Article  CAS  Google Scholar 

  22. Q. Wang, B. Gao, K. Wang, W. Wang, L. Tong, X. Li, Mater. Sci. Eng. A 820 (2021) 141578.

    Article  CAS  Google Scholar 

  23. S. Ding, T. Taylor, S.A. Khan, Y. Sato, J. Yanagimoto, J. Mater. Process. Technol. 299 (2022) 117359.

    Article  CAS  Google Scholar 

  24. K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, J. Mater. Process. Technol. 77 (1988) 166–174.

    Article  Google Scholar 

  25. F. Jiang, H. Zhang, L. Li, J. Chen, Mater. Sci. Eng. A 552 (2012) 269–275.

    Article  CAS  Google Scholar 

  26. S.I. Kim, Y. Lee, B.L. Jang, Mater. Sci. Eng. A 357 (2003) 235–239.

    Article  Google Scholar 

  27. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82 (2015) 244–254.

    Article  ADS  CAS  Google Scholar 

  28. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Eng. A 485 (2008) 664–672.

    Article  Google Scholar 

  29. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39 (2008) 1371–1381.

    Article  Google Scholar 

  30. S. Xu, J. He, R. Zhang, F. Zhang, X. Wang, J. Mater. Res. Technol. 23 (2023) 1738–1752.

    Article  CAS  Google Scholar 

  31. F. Chen, Z. Cui, D. Sui, B. Fu, Mater. Sci. Eng. A 540 (2012) 46–54.

    Article  CAS  Google Scholar 

  32. R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform. 10 (2001) 710–717.

    Article  CAS  Google Scholar 

  33. X.M. Chen, Y.C. Lin, X.H. Li, M.S. Chen, W.Q. Yuan, Vacuum 149 (2018) 1–11.

    Article  ADS  Google Scholar 

  34. J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496 (2008) 417–424.

    Article  Google Scholar 

  35. I. Gutierrez-Urrutia, A. Shibata, K. Tsuzaki, Acta Mater. 233 (2022) 117980.

    Article  CAS  Google Scholar 

  36. G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1897–1904.

    Google Scholar 

  37. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hänninen, Acta Mater. 59 (2011) 1068–1076.

    Article  ADS  CAS  Google Scholar 

  38. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Article  ADS  CAS  Google Scholar 

  39. S. Kumar, D. Samantaray, B. Aashranth, N. Keskar, M.A. Davinci, U. Borah, D. Srivastava, A.K. Bhaduri, Mater. Sci. Eng. A 743 (2019) 148–158.

    Article  CAS  Google Scholar 

  40. W. Huang, Calphad 13 (1989) 243–252.

    Article  CAS  Google Scholar 

  41. A.T. Dinsdale, Calphad 15 (1991) 317–425.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No. U1810207) and the Innovation Pilot Project for Fusion of Science, Education and Industry (International Cooperation) from Qilu University of Technology (No. 2020KJC-GH03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-shan He or Xi-tao Wang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Sg., He, Js., Zhang, Rz. et al. Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation. J. Iron Steel Res. Int. 31, 475–487 (2024). https://doi.org/10.1007/s42243-023-01079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01079-0

Keywords

Navigation