Skip to main content
Log in

Effects of rare earth elements on inclusions, microstructure and impact toughness of spring steel

  • ORIGINAL PAPER
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Spring steel is an indispensable basic part manufacturing material in mechanical equipment, which is widely used in transportation tools such as automobiles, railways, construction machinery and other industries. The effects of rare earth (RE) on inclusions, microstructure, carbides and impact toughness of 50CrV spring steel were studied by means of optical microscope, scanning electron microscope, transmission electron microscope and impact tester. The results show that the addition of rare earth can modify the main MnS and Al2O3 inclusions in steel to form spherical or near-spherical rare earth inclusions, and the size of inclusions is significantly reduced. In the quenched structure, the size of martensite slab becomes smaller and the structure is refined. After tempering, the carbide changes from sheet to ellipse, which makes it easier for spring steel to form stress concentration cracks under stress. VC becomes finer and more dispersed, which leads to better pinning of grain boundaries and smaller grain sizes. The impact toughness of 50CrV-RE spring steel increased from 21 to 41 J by 95% due to the improvement of inclusions, microstructure and carbides by rare earth. It is possible to improve the strength and toughness of spring steel for the improvement of railway running speed and the development of vehicle lightweight in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Wang, X. Liu, F. Xie, C. Lai, H. Li, Q. Zhang, JOM 70 (2018) 2385–2391.

    Article  Google Scholar 

  2. C.L. Zhang, Y.Z. Liu, C. Jiang, J.F. Xiao, J. Iron Steel Res. Int. 18 (2011) No. 6, 49–53.

    Article  Google Scholar 

  3. S. Liu, D. Liu, S. Liu, Met. Sci. Heat Treat. 52 (2010) 57–60.

    Article  Google Scholar 

  4. W.J. Nam, C.S. Lee, D.Y. Ban, Mater. Sci. Eng. A 289 (2000) 8–17.

    Article  Google Scholar 

  5. V.R.M. Gonçalves, B. Podgornik, V. Leskovšek, G.E. Totten, L. de Campos Franceschini Canale, J. Mater. Eng. Perform. 28 (2019) 769–775.

  6. O.P. Ostash, R.V. Chepil’, L.I. Markashova, V.I. Hrybovs’ka, V.V. Kulyk, O.M. Berdnikova, Mater. Sci. 53 (2018) 684–690.

  7. L. Kucerova, Metals 7 (2017) 537.

    Article  Google Scholar 

  8. L. Xu, L. Chen, W. Sun, Vacuum 154 (2018) 322–332.

    Article  Google Scholar 

  9. Y. Harada, K. Mori, J. Mater. Process. Technol. 162–163 (2005) 498–503.

    Article  Google Scholar 

  10. Z.F. Luo, Y.L. Liang, S.L. Long, Y. Jiang, Z.L. Wu, Mater. Sci. Eng. A 690 (2017) 225–232.

    Article  Google Scholar 

  11. B. Podgornik, V. Leskovšek, M. Godec, B. Senčič, Mater. Sci. Eng. A 599 (2014) 81–86.

    Article  Google Scholar 

  12. B. Podgornik, M. Torkar, J. Burja, M. Godec, B. Senčič, Mater. Sci. Eng. A 638 (2015) 183–189.

    Article  Google Scholar 

  13. L. Zhou, J. Liang, X.H. Wang, P. Zhang, X.F. Shi, J. Iron Steel Res. 29 (2017) 626–636.

    Google Scholar 

  14. K. Xu, L. Xiao, Iron and Steel 47 (2012) No. 10, 1–13.

    Google Scholar 

  15. C. Yang, Y. Luan, D. Li, Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.

    Article  Google Scholar 

  16. H. Yan, Y. Hu, D. Zhao, Adv. Mater. Sci. Eng. 2018 (2018) 1–9.

    Google Scholar 

  17. H. Liu, P. Fu, H. Liu, C. Sun, J. Gao, D. Li, Metals 7 (2017) 436.

    Article  Google Scholar 

  18. X. Zhang, W. Wei, L. Cheng, J. Liu, K. Wu, M. Liu, Appl. Surf. Sci. 475 (2019) 83–93.

    Article  Google Scholar 

  19. L. Chen, X. Ma, L. Wang, X. Ye, Mater. Des. 32 (2011) 2206–2212.

    Article  Google Scholar 

  20. X. Zhou, X. Yin, F. Fang, J. Jiang, W. Zhu, J. Rare Earths 30 (2012) 1075–1078.

    Article  Google Scholar 

  21. H.G. Fu, Q. Xiao, Y.X. Li, Mater. Sci. Eng. A 395 (2005) 281–287.

    Article  Google Scholar 

  22. M.A. Hamidzadeh, M. Meratian, A. Saatchi, Mater. Sci. Eng. A 571 (2013) 193–198.

    Article  Google Scholar 

  23. Q.C. Zhou, Y.J. Pan, X.J. Wu, D.K. Chen, Chinese Rare Earths 28 (2007) No. 6, 66–70.

    Google Scholar 

  24. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, Y. Ikuhara, Science 311 (2006) 212–215.

    Article  Google Scholar 

  25. Q.X. Yang, Z.Q. Cui, B. Liao, M. Yao, Journal of Rare Earths 17 (1999) 46–48.

    Google Scholar 

  26. R.M. Geng, J. Li, C.B. Shi, J. Iron Steel Res. Int. 29 (2022) 1659–1668.

    Article  Google Scholar 

  27. Y. Cao, X. Wan, Y. Hou, C. Niu, Y. Liu, G. Li, Steel Res. Int. 90 (2019) 1900084.

    Article  Google Scholar 

  28. N. Yan, S. Yu, Y. Chen, J. Rare Earths 35 (2017) 203–210.

    Article  Google Scholar 

  29. C. Gallo, J.A. Álvarez, F. Gutiérrez-Solana, J.A. Polanco, European Structural Integrity Society 30 (2002) 271–278.

    Google Scholar 

  30. S. Cvetkovski, European Structural Integrity Society 30 (2002) 95–102.

    Google Scholar 

  31. B.Y. Chen, Y.W. Shi, Int. J. Press. Vessels Pip. 38 (1989) 275–292.

    Article  Google Scholar 

  32. C.S. Wiesner, Int. J. Press. Vessels Pip. 69 (1996) 185–196.

    Article  Google Scholar 

  33. A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Technol. 16 (2000) 26–40.

    Article  Google Scholar 

  34. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738–2746.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (No. 52101165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-kun Luan or Bao-guang Sang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Cl., Yang, Cy., Liu, P. et al. Effects of rare earth elements on inclusions, microstructure and impact toughness of spring steel. J. Iron Steel Res. Int. 31, 933–944 (2024). https://doi.org/10.1007/s42243-023-01055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01055-8

Keywords

Navigation