Skip to main content
Log in

A deoxidation thermodynamic model for 304 stainless steel considering multiple-components coupled reactions

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag–steel equilibrium, the law of mass conservation, and the ion and molecule coexistence theory. In the developed model, the Fe–Cr–Mn–Si–Al–S–O–melts reaction system and CaO–MgO–CaF2–FeO–MnO–Al2O3–SiO2–Cr2O3 slags were considered. The oxygen contents calculated by the model are in good agreement with experimental results and reference data. The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity (\(w_{{({\text{CaO}})}} /w_{{({\text{SiO}}_{2} )}}\), where w(i) is the mass percentage of component i) and decreasing temperature. Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15 × 10–6. The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags, which is more significant at lower binary basicity. Besides, a small amount of FeO, MnO, and Al2O3 (about 0–2.5 wt.%) in slags has little effect on equilibrium oxygen contents. Furthermore, it is found that the [C]–[O] reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(a_{(i)}^{{\text{e}}}\) :

Activity of component i in equilibrated slag

\(a_{[i]}^{{\text{e}}}\) :

Activity of component i in equilibrated steel

\(B\) :

Binary basicity (w(CaO)/\(w_{(\text{SiO}_2)}\)) of CaO–MgO–CaF2–FeO–MnO–Al2O3–SiO2–Cr2O3 slags

\(e_{i}^{j}\) :

Activity interaction coefficient of component j on component i in molten steel based on mass percentage as concentration unit and 1 mass percent (1 wt.%) as standard state

\(f_{i}^{{\text{e}}}\) :

Activity coefficient of component i in equilibrated metal phase based on mass percentage as concentration unit and 1 mass percent (1 wt.%) as a standard state

\(\Delta_{\text{r}}{{G}}_{\text{m}}^{\ominus} \) :

Standard molar Gibbs free energy

\(\Delta_{{\text{r}}} G_{{{\text{m}},[{\text{M}}] - [{\text{O}}]}}^{ \ominus }\) (\(\Delta_{{\text{r}}} G_{{{\text{m}},({\text{MS)}} - [{\text{O}}]}}^{ \ominus }\)):

Standard molar Gibbs free energy changes of [M]–[O] ((MS)–[O]) reaction, J mol–1

\(\Delta_{{\text{r}}} G_{{{\text{m}},[{\text{M}}] - [{\text{O}}]}}^{{}}\) :

Molar Gibbs free energy changes of [M]–[O] reaction, J mol–1

\(K_{{[{\text{M}}] - [{\text{O}}]}}^{ \ominus }\) (\(K_{{({\text{O}}) - [{\text{MS}}]}}^{ \ominus }\)):

Equilibrium constant of [M]–[O] ((O)–[MS]) reaction

\({{K_{{\text{c}}i}}}\) :

Equilibrium constant of a complex molecular formation reaction equation code-named ci

\(M_{i}\) :

Molecular mass of element i or component i, g mol–1

\({\text{MO}}_{x}\) (\({\text{MO}}\)):

Oxide component in slags

\(N_{i}\) :

Mass action concentrations of structural unit i or ion couple i in equilibrated slags based on IMCT

\(n_{i}^{{\text{e}}}\) :

Mole amount of components i in equilibrated slag, mol

\(n_{i}\) :

Mole amount of structural unit i, or ion couple i in equilibrated slag, mol

\(\sum {n_{i}^{{}} }\) :

Sum of mole amounts of all structural units and ion couples in equilibrated slags, mol

\(\Delta n_{{[{\text{O}}], \, [{\text{M}}] - [{\text{O}}]}}\) :

Molar change of oxygen in molten steel caused by [M]–[O] reaction over whole course of reaction, mol

\(\sum {\Delta n_{{[{\text{O}}], \, [{\text{M}}] - [{\text{O}}]}} }\) :

Total molar change of oxygen in molten steel over whole course of reaction, mol

\(p_{{{\text{CO}}}}\) :

CO partial pressure in furnace, Pa

\(R\) :

Gas constant, 8.314 × 103 kJ mol1 K1

\(T\) :

Absolute temperature, K

\(W_{{[{\text{M}}]}}^{{\text{e}}}\) (\(W_{{[{\text{M}}]}}^{{\text{i}}}\)):

Mass of element M in equilibrated (initial) metal phase, g

\(W_{{({\text{M}})}}^{{\text{e}}}\) (\(W_{{({\text{M}})}}^{{\text{i}}}\)):

Mass of element M in equilibrated (initial) slag phase, g

\(W_{{{\text{metal}}}}^{{\text{e}}}\) (\(W_{{{\text{metal}}}}^{{\text{i}}}\)):

Mass of equilibrated (initial) metal, g

\(W_{{{\text{slag}}}}^{{\text{e}}}\) (\(W_{{{\text{slag}}}}^{{\text{i}}}\)):

Mass of equilibrated (initial) slag, g

\(W_{{{\text{slag}}}}\) :

Mass of slag phase

\(W_{{{\text{metal}}}}\) :

Mass of metal phase

\(\Delta W_{{[{\text{C}}]}}\) :

Mass reduction of C element in 100 g steel during whole process of slag–metal reactions (\(\Delta W_{{[{\text{C}}]}} = W_{{[{\text{C}}]}}^{{\text{i}}} - W_{{[{\text{C}}]}}^{{\text{e}}}\)), g

\(w_{(i)}\) :

Mass percentage of component i

\(w_{(i)}^{{\text{e}}}\) (\(w_{(i)}^{{\text{i}}}\)):

Mass percentage of component i in equilibrated (initial) slag phase, wt.%

\(w_{[i]}^{{\text{e}}}\) (\(w_{[i]}^{{\text{i}}}\)):

Mass percentage of component i in equilibrated (initial) metal phase, wt.%

\(w_{{[{\text{O}}],{\text{Calculated}}}}^{{{\text{e}},{\text{ Coupled}}}}\) :

Equilibrium oxygen content calculated by developed model, wt.%

\(w_{{[{\text{O}}],{\text{Calculated}}}}^{{{\text{e}},{\text{ [M]}} - {\text{[O]}}}}\) :

Equilibrium oxygen content calculated by [M]–[O] reaction

\(w_{{[{\text{O}}],{\text{Measured}}}}^{{\text{e}}}\) :

Measured oxygen content in final steel, wt.%

\(w_{{[{\text{O}}],{\text{Calculated}}}}^{{{\text{e}},{\text{ Coupled with [C]}} - {\text{[O]}}}}\) :

Equilibrium oxygen content calculated by established model considering [C]–[O] reaction, wt.%

\(x\) :

Stoichiometric numbers of M and O elements in oxide MOx

[]:

Component in metal phase

():

Component in slag

metal:

Metal phase

slag:

Slag phase

\([{\text{M}}]\!\! -\! \![{\text{O}}]\) :

Interface reaction \(x[{\text{M}}] + y[{\text{O}}] = ({\text{M}}_{x} {\text{O}}_{y} )\)

\({\text{(MS)}}\!\! -\! \![{\text{O}}]\) :

Interface reaction \(\left( {{\text{MS}}} \right) + \left[ {\text{O}} \right] = \left( {{\text{MO}}} \right) + \left[ {\text{S}} \right]\)

e:

Equilibrium state

i:

Initial state

References

  1. S.Q. Zheng, C.Y. Li, Y.M. Qi, L.Q. Chen, C.F. Chen, Corros. Sci. 67 (2013) 20–31.

    CAS  Google Scholar 

  2. L.Z. Wang, Y.T. Li, S.F. Yang, J.Q. Li, C.Y. Chen, C.R. Li, B.Y. Tuo, Metall. Mater. Trans. B 53 (2022) 1212–1223.

    Google Scholar 

  3. E.N. Moran, G.S. Frankel, Y.H. Kim, Corrosion 67 (2011) 95005.

    Google Scholar 

  4. M.A. Baker, J.E. Castle, Corros. Sci. 33 (1992) 1295–1312.

    CAS  Google Scholar 

  5. P.C. Yan, S.G. Huang, L. Pandelaers, J. Van Dyck, M.X. Guo, B. Blanpain, Metall. Mater. Trans. B 44 (2013) 1105–1119.

    Google Scholar 

  6. C.H. Jiang, D. Tang, C. Zhang, Y. Zhang, A.M. Zhao, Mater. Res. Innov. 18 (2014) S4-281.

    Google Scholar 

  7. L.F. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291.

    CAS  Google Scholar 

  8. Y. Ren, L.F. Zhang, S.S. Li, ISIJ Int. 54 (2014) 2772–2779.

    CAS  Google Scholar 

  9. J. Jun, K. Holguin, G.S. Frankel, Corrosion 70 (2014) 146–155.

    CAS  Google Scholar 

  10. J. Guo, S.S. Cheng, Z.J. Cheng, J. Iron Steel Res. Int. 21 (2014) 166–173.

    Google Scholar 

  11. K. Mineura, I. Takahash, K. Tanaka, ISIJ Int. 30 (1990) 192–198.

    Google Scholar 

  12. S.Y. Li, B. Li, X.M. Zhao, X.J. Xi, S.C. Duan, J. Guo, H. Guo, J. Iron Steel Res. Int. 28 (2021) 978–989.

    CAS  Google Scholar 

  13. S.Y. Li, B. Li, S.C. Duan, X.M. Zhao, J. Guo, H.J. Guo, J. Cent. South Univ. 28 (2021) 370–385.

    Google Scholar 

  14. K. Taguchi, H. Ono-nakazato, T. Usui, K. Marukawa, K. Katogi, H. Kosaka, ISIJ Int. 45 (2005) 1572–1576.

    CAS  Google Scholar 

  15. K. Suzuki, S. Ban-ya, M. Hino, ISIJ Int. 41 (2001) 813–817.

    CAS  Google Scholar 

  16. K. Suzuki, S. Ban-ya, M. Hino, ISIJ Int. 42 (2002) 146–149.

    CAS  Google Scholar 

  17. M. Paek, J. Jang, J. Jo, L. Holappa, J. Pak, Metall. Mater. Trans. B 52 (2020) 236–244.

    Google Scholar 

  18. X. Zhang, B. Xie, H.Y. Li, J. Diao, C.Q. Ji, Ironmak. Steelmak. 40 (2013) 282–289.

    CAS  Google Scholar 

  19. J.F. Xu, F.X. Huang, X.H. Wang, C.L. Jing, Steel Res. Int. 87 (2016) 1694–1701.

    CAS  Google Scholar 

  20. D.G.C. Robertson, B. Deo, S. Ohguchi, Ironmak. Steelmak. 11 (1984) 41–55.

    CAS  Google Scholar 

  21. S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, J.H.E. Jeffes, Ironmak. Steelmak. 11 (1984) 202–213.

    Google Scholar 

  22. L. Jonsson, D. Sichen, P. Jonsson, ISIJ Int. 38 (1998) 260–270.

    Google Scholar 

  23. R.J. Pomfret, P. Grieveson, Can. Metall. Quart. 22 (1983) 287–299.

    CAS  Google Scholar 

  24. A.N. Conejo, F.R. Lara, M. Macias Hernández, R.D. Morales, Steel Res. Int. 78 (2007) 141–150.

  25. G. Okuyama, K. Yamaguchi, S. Takeuchi, K. Sorimachi, ISIJ Int. 40 (2000) 121–128.

    CAS  Google Scholar 

  26. S. Kitamura, T. Kitamura, E. Aida, R. Sakomura, T. Kanek, T. Nuibe, ISIJ Int. 31 (1991) 1329–1335.

    Google Scholar 

  27. S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, J. Guo, Metall. Mater. Trans. B 51 (2019) 353–364.

    Google Scholar 

  28. K. Ashok, G.K. Mandal, D. Bandyopadhyay, Trans. Indian Inst. Met. 68 (2015) 9–18.

    Google Scholar 

  29. S.J. Li, G.G. Cheng, Y. Huang, W.X. Dai, Z.Q. Miao, J. Iron Steel Res. Int. 27 (2020) 380–391.

    CAS  Google Scholar 

  30. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan, C.W. Li, ISIJ Int. 57 (2017) 713–722.

    CAS  Google Scholar 

  31. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1180.

    Google Scholar 

  32. X.M. Yang, M. Zhang, C.B. Shi, G.M. Chai, J. Zhang, Metall. Mater. Trans. B 43 (2012) 241–266.

    Google Scholar 

  33. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang, Metall. Mater. Trans. B 42 (2011) 738–770.

    Google Scholar 

  34. S.C. Duan, C. Li, X.L. Guo, H.J. Guo, J. Guo, W.S. Yang, Ironmak. Steelmak. 45 (2018) 655–664.

    CAS  Google Scholar 

  35. S.M. Jung, ISIJ Int. 43 (2003) 216–223.

    CAS  Google Scholar 

  36. T. Itoh, T. Nagasaka, M. Hino, ISIJ Int. 40 (2000) 1051–1058.

    CAS  Google Scholar 

  37. L.C. Zhang, Y.P. Bao, M. Wang, C.J. Zhang, Int. J. Miner. Metall. Mater. 23 (2016) 408–416.

    CAS  Google Scholar 

  38. S.C. Duan, X.L. Guo, H.J. Guo, J. Guo, Ironmak. Steelmak. 44 (2017) 168–184.

    CAS  Google Scholar 

  39. J.X. Chen, Handbook of common figures, tables and data for steelmaking, 2nd Ed., Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  40. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, H.J. Guo, ISIJ Int. 49 (2009) 1828–1837.

    CAS  Google Scholar 

  41. J. Guo, S.W. Han, X.R. Chen, H.J. Guo, Y. Yan, Metall. Mater. Trans. B 51 (2020) 1813–1823.

    CAS  Google Scholar 

  42. Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, W.D. Mao, Metall. Mater. Trans. B 47 (2015) 1024–1034.

    Google Scholar 

  43. X.R. Chen, G.G. Cheng, Y. Li, Y.Y. Hou, Metall. Res. Technol. 116 (2019) 626.

    CAS  Google Scholar 

  44. G.J. Chen, J. Yang, L. Li, M. Zhang, S.P. He, J. CO2 Util. 50 (2021) 101586.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Key R&D Plan of Shandong Province in 2021 (Grant No. 2021CXGC010209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-jie Guo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Appendix

Appendix

See Tables 9 and 10.

Table 9 Expression of structural units as ion couples or molecules, their mole numbers, and related mass action concentrations expressions of in CaO–MgO–CaF2–FeO–MnO–Al2O3–SiO2–Cr2O3–S slags
Table 10 Chemical reaction formulas of forming complex molecules, their standard molar Gibbs free energy changes and expression of mass action concentrations in CaO–MgO–CaF2–FeO–MnO–Al2O3–SiO2–Cr2O3–S slags at metallurgical temperature

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Shang, Gh., Zhang, Lp. et al. A deoxidation thermodynamic model for 304 stainless steel considering multiple-components coupled reactions. J. Iron Steel Res. Int. 31, 74–91 (2024). https://doi.org/10.1007/s42243-023-01054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01054-9

Keywords

Navigation