Skip to main content
Log in

Vibrations of tandem cold rolling mill: coupled excitation of rolling force and variable stiffness of fault-free back-up roll bearing

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Vibration issues of a five-stand tandem cold rolling mill were found in the steel production practice, and the experimental observation and numerical analysis indicated that the vibrations were related to the back-up roll bearing. The results were validated by replacing the back-up roll bearing with the new bearing resulting in 30% decline in vibration amplitude. Models describing the four-row cylindrical roller bearing and the vertical system of the cold rolling mill including the bearing were established. Moreover, the mechanisms of periodic excitation and amplified vibrations of fault-free bearing were explained theoretically, along with the analysis of bifurcation behaviors of the motion states of the roller bearing and rolling mill system. It is found that the energy transmitted between vibrations with different frequencies if multiple excitation frequencies in the rolling mill system were close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

c :

Structural clearance between inner and outer rings

c 5 :

Equivalent damping in rolling process

c in :

Equivalent damping of bearing inner ring

c out :

Equivalent damping of bearing outer ring

c p :

Equivalent damping of bearing in rolling process

d b :

Rolling element diameter

D b :

Nominal diameter of bearing

f :

Inner ring rotational frequency

F :

Bearing preload

ΔF :

Dynamic rolling force

f cage :

Cage rotational frequency

f jk :

Variable stiffness excitation frequency of bearing

f o :

Outer ring fault frequency

F R :

Steady rolling force

k g :

Equivalent stiffness of rolling element

k in :

Equivalent stiffness of bearing inner ring

k out :

Equivalent stiffness of bearing outer ring

m 1 :

Equivalent mass of upper part of rolling mill

m 2 :

Equivalent mass of upper back-up roll

m 3 :

Equivalent mass of upper intermediate roll

m 4 :

Equivalent mass of upper work roll

m 5 :

Equivalent mass of lower work roll

m 6 :

Equivalent mass of lower intermediate roll

m 7 :

Equivalent mass of lower back-up roll and cylinder piston

m 8 :

Equivalent mass of lower part of rolling mill and cylinder block

m in :

Equivalent mass of bearing inner ring

m out :

Equivalent mass of bearing outer ring

n g :

Total number of rolling element

t :

Time

t en :

Entry thickness

T en :

Entry tension

t ex :

Exit thickness

T ex :

Exit tension

v R :

Rolling speed

α :

Bearing contact angle

ω c age :

Angular speed of cage rotation

ω in :

Angular speed of inner ring

ϕ i :

Angle of rolling element i

ϕ o :

Initial angle of rolling element

References

  1. I. Yarita, K. Furukawa, Y. Seino, T. Takimoto, Y. Nakazato, K. Nakagawa, Trans. Iron Steel Inst. Jpn. 18 (1978) 1–10.

    Article  Google Scholar 

  2. J. Tlusty, G. Chandra, S. Critchley, D. Paton, CIRP Annals 31 (1982) 195–199.

    Article  Google Scholar 

  3. I.S. Yun, W.R.D. Wilson, K.F. Ehmann, J. Manuf. Sci. Eng. 120 (1998) 330–336.

    Article  Google Scholar 

  4. I.S. Yun, K.F. Ehmann, W.R.D. Wilson, J. Manuf. Sci. Eng. 120 (1998) 337–342.

    Article  Google Scholar 

  5. I.S. Yun, K.F. Ehmann, W.R.D. Wilson, J. Manuf. Sci. Eng. 120 (1998) 343–348.

    Article  Google Scholar 

  6. X.Q. Yan, J. Mech. Eng. 47 (2011) No. 17, 61–65.

    Article  Google Scholar 

  7. X. Yang, C.N. Tong, G.F. Yue, J.J. Meng, J. Iron Steel Res. Int. 17 (2010) No. 12, 30–34.

    Article  Google Scholar 

  8. A. Świątoniowski, A. Bar, J. Mater. Process. Technol. 134 (2003) 214–224.

    Article  Google Scholar 

  9. H.Y. Zhao, K.F. Ehmann, J. Manuf. Sci. Eng. 135 (2013) 031001

    Article  Google Scholar 

  10. J.B. Qi, X.X. Wang, X.Q. Yan, J. Iron Steel Res. Int. 27 (2020) 528–536.

    Article  Google Scholar 

  11. X.Q. Yan, J.B. Qi, X.X. Wang, J. Iron Steel Res. Int. 26 (2019) 697–703.

    Article  Google Scholar 

  12. A. Bar, A. Świątoniowski, J. Mater. Process. Technol. 155–156 (2004) 2116–2121.

    Article  Google Scholar 

  13. Z.Y. Gao, Y. Liu, Q.D. Zhang, M.L. Liao, B. Tian, Mech. Syst. Sig. Process. 140 (2020) 106692.

    Article  Google Scholar 

  14. A. Świątoniowski, P. Sobkowiak, R. Gregorczyk, J. Mater. Process. Technol. 155–156 (2004) 1519–1525.

    Article  Google Scholar 

  15. D.X. Hou, L. Xu, P.M. Shi, J. Iron Steel Res. Int. 28 (2021) 574–585.

    Article  Google Scholar 

  16. A. Heidari, M.R. Forouzan, J. Adv. Res. 4 (2013) 27–34.

    Article  Google Scholar 

  17. L.Q. Zeng, Y. Zang, Z.Y. Gao, J. Vib. Acoust. 139 (2017) 061015.

    Article  Google Scholar 

  18. D.X. Hou, R.R. Peng, H.R. Liu, Shock Vibration 2014 (2014) 543793.

    Google Scholar 

  19. S. Liu, H. Ai, B. Sun, S. Li, Z. Meng, Chaos, Solitons & Fractals 98 (2017) 101–108.

    Article  MathSciNet  Google Scholar 

  20. R. Peng, X. Zhang, P. Shi, Metals 11 (2021) 170.

    Article  Google Scholar 

  21. E. Brusa, L. Lemma, D. Benasciutti, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224 (2010) 1645–1654.

    Article  Google Scholar 

  22. C. Zhao, J.L. Sun, S.L. Lin, Y. Peng, Sensors 21 (2021) 5494.

    Article  Google Scholar 

  23. M. Farina, E. Osto, A. Perizzato, L. Piroddi, R. Scattolini, Control Eng. Pract. 39 (2015) 35–44.

    Article  Google Scholar 

  24. N.W. Nirwan, H.B. Ramani, Mater. Today Proceed. 51 (2022) 344–354.

    Article  Google Scholar 

  25. D.X. Hou, Z.N. Sun, J.T. Mu, P.M. Shi, ISIJ Int. 62 (2022) 179–190.

    Article  Google Scholar 

  26. M.R. Forouzan, I. Kiani, M.R. Niroomand, M. Salimi, Steel Res. Int. 79 (2008) 483–489.

    Google Scholar 

  27. M.R. Niroomand, M.R. Forouzan, M Fasihfar, M Salimi, Steel Res. Int. 81 (2010) 162–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qiang Yan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yj., Wang, S., Qi, Jb. et al. Vibrations of tandem cold rolling mill: coupled excitation of rolling force and variable stiffness of fault-free back-up roll bearing. J. Iron Steel Res. Int. 30, 1792–1802 (2023). https://doi.org/10.1007/s42243-022-00886-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00886-1

Keywords

Navigation