Skip to main content
Log in

Denaturation behavior of inclusions in industrial pure iron by calcium treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Only a few Chinese enterprises can produce high-quality industrial pure iron, and studies on the smelting process of industrial pure iron were limited. The inclusions in a melting process were characterized by means of electron microscopy and an automatic inclusion analysis system, and the evolution mechanism of inclusion was studied using thermodynamic calculation to optimize the calcium alloy addition in liquid window. The results show that during the smelting process, inclusions mainly composed of Al2O3 and spinel are formed before calcium treatment. After calcium treatment, they continuously react with [Ca], [S] and [Ti], grow up, and are removed during refining and tundish pouring. In the end, there are more small-sized inclusions containing CaS, and the contents of Al2O3 and spinel are less. According to thermodynamic calculations, the appropriate calcium treatment liquid window for the molten steel composition is (10–38) × 10–6. Calcium treatment has changed the main types of inclusions in industrial pure iron from Al2O3 to small-sized inclusions containing CaS and effectively reduces the influence of Al2O3 inclusions on the quality of industrial pure iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.C. Cai, Iron and Steel 35 (2000) No. 2, 18–20.

    Google Scholar 

  2. W.W. Zhang, X.W. Liao, J.X. Jia, F.Z. Yu, Angang Technology (2015) No. 3, 6–11.

  3. Y. Takeda, C. Kiattisaksri, M. Aramaki, S. Munetoh, O. Furukimi, ISIJ Int. 57 (2017) 1129–1137.

  4. C.J. Hua, M. Wang, M.Y. Zhang, R.X. Zheng, Y.P. Bao, Chin. J. Eng. 43 (2021) 925–934.

    Google Scholar 

  5. L.Z. Wang, J.Q. Li, S.F. Yang, Z.T. Chen, H.X. Jin, Iron and Steel 54 (2019) No. 2, 27–32.

    Google Scholar 

  6. J.C. Zheng, C. Pan, C.W. Cui, P. Lin, X.J. Hu, Chin. J. Eng. 40 (2018) No. S1, 77–84.

    Article  Google Scholar 

  7. C. Pan, X.J. Hu, J.C. Zheng, P. Lin, K.C. Chou, Int. J. Miner. Metall. Mater. 27 (2020) 1499–1507.

    Article  Google Scholar 

  8. C.J. Hua, M. Wang, Y.P. Bao, Metall. Mater. Trans. B 51 (2020) 2871–2881.

    Article  Google Scholar 

  9. J.H. Chu, Y.P. Bao, X. Li, F. Gao, M. Wang, Steel Res. Int. 92 (2021) 2000333.

    Article  Google Scholar 

  10. M. Olette, ISIJ Int. 33 (1993) 1113–1124.

    Article  Google Scholar 

  11. W. Chen, H.Z. Su, W.Q. Zhang, Steelmaking 25 (2009) No. 2, 19–21.

    Google Scholar 

  12. Y.Y. Zhang, J.H. Liu, X.F. Su, H. Cui, J. Zhang, Y.L. Ji, Chin. J. Eng. 38 (2016) No. S1, 160–168.

    Google Scholar 

  13. H. Wang, J. Li, C.B. Shi, W.T. Yu, Chin. J. Eng. 40 (2018) No. S1, 11–18.

    Google Scholar 

  14. X.F. Cai, Y.P. Bao, L. Lin, Chin. J. Eng. 38 (2016) No. S1, 32–36.

    Google Scholar 

  15. L. Lin, Y.P. Bao, J.H. Liu, J.X. Du, C.P. Xiao, Special Steel 31 (2010) No. 5, 51–54.

    Google Scholar 

  16. J.H. Liu, H.J. Wu, Y.P. Bao, H.S. Qin, S.S. Zang, X.J. Zhang, J. Univ. Sci. Technol. Beijing 32 (2010) 312–318.

    Google Scholar 

  17. J.H. Chu, Y.P. Bao, X. Li, M. Wang, F. Gao, Separation and Purification Technology 255 (2021) 117698.

    Article  Google Scholar 

  18. X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, J. Yang, Acta Metall. Sin. 49 (2013) 553–561.

    Article  Google Scholar 

  19. D.Z. He, Z.J. Su, Z.Y. Zhou, J. Hunan Univ. Technol. 24 (2010) No. 3, 5–9.

    Google Scholar 

  20. J.H. Liu, Y.P. Bao, M. Wang, T.Q. Li, Y. Ren, S. Zhang, Iron and Steel 45 (2010) No. 2, 40–44.

    Google Scholar 

  21. D.C. Tang, H.Y. Zhang, L.P. Ji, B.L. Xiao, D.W. Zhang, Z. Zeng, Iron and Steel 53 (2018) No. 4, 37–41.

    Google Scholar 

  22. H.Q. Wen, Shanghai Metals 24 (2002) No. 6, 32–35.

    Google Scholar 

  23. T.T. Li, J.B. Zhang, Y. Jin, W.K. Yang, Angang Technology 9 (1998) No. 9, 41–44.

    Google Scholar 

  24. B. Han, J. Tian, L.J. Su, Modern Trans. Metall. Mater. 47 (2019) No. 5, 6–8.

    Google Scholar 

  25. M.G. Li, R.Z. Liu, T.C. Lin, C.J. Wang, C. Li, W. Gao, J. Iron Steel Res. 26 (2014) No. 5, 56−60.

    Google Scholar 

  26. D.C. Weol, F. Peter, ISIJ Int. 44 (2004) 229–234.

    Article  Google Scholar 

  27. L.H. Han, C.M. Yu, G.S. Feng, Research and Exploration in Laboratory 35 (2016) No. 5, 49–55.

    Google Scholar 

  28. K.Z. Yang, Q.Y. Zhang, Z.S. Chang, Special Steel 41 (2020) No. 6, 36–40.

    Google Scholar 

  29. Z.Y. Deng, M.Y. Zhu, ISIJ Int. 53 (2013) 450–458.

    Article  Google Scholar 

  30. S.J. Li, Y. Li, Z.H. Jiang, L.K. Liang, J. Northeast. Univ. (Nat. Sci.) 31 (2010) 848–851.

    Google Scholar 

  31. M.Y. Zhu, Z.Y. Deng, Acta Metall. Sin. 58 (2022) 28–44.

    Google Scholar 

  32. V. Martin, S. George, S. Seetharaman, ISIJ Int. 46 (2006) 450–457.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51774031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-ping Bao or Chao Gu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Bao, Yp., Hua, Cj. et al. Denaturation behavior of inclusions in industrial pure iron by calcium treatment. J. Iron Steel Res. Int. 30, 249–258 (2023). https://doi.org/10.1007/s42243-022-00877-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00877-2

Keywords

Navigation