Skip to main content

Advertisement

Log in

Monitoring and diagnosis of complex production process based on free energy of Gaussian–Bernoulli restricted Boltzmann machine

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Online monitoring and diagnosis of production processes face great challenges due to the nonlinearity and multivariate of complex industrial processes. Traditional process monitoring methods employ kernel function or multilayer neural networks to solve the nonlinear mapping problem of data. However, the above methods increase the model complexity and are not interpretable, leading to difficulties in subsequent fault recognition/diagnosis/location. A process monitoring and diagnosis method based on the free energy of Gaussian–Bernoulli restricted Boltzmann machine (GBRBM-FE) was proposed. Firstly, a GBRBM network was established to make the probability distribution of the reconstructed data as close as possible to the probability distribution of the raw data. On this basis, the weights and biases in GBRBM network were used to construct F statistics, which represents the free energy of the sample. The smaller the energy of the sample is, the more normal the sample is. Therefore, F statistics can be used to monitor the production process. To diagnose fault variables, the F statistic for each sample was decomposed to obtain the Fv statistic for each variable. By analyzing the deviation degree between the corresponding variables of abnormal samples and normal samples, the cause of process abnormalities can be accurately located. The application of converter steelmaking process demonstrates that the proposed method outperforms the traditional methods, in terms of fault monitoring and diagnosis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Xu, Quality control theory and method of metallurgical production process, Metallurgical Industry Press, Beijing, China, 2015.

    Google Scholar 

  2. Z. Wu, M. Shamsuzzaman, J. Manuf. Syst. 24 (2005) 302–314.

    Article  Google Scholar 

  3. A. Salmasnia, A. Rahimi, B. Abdzadeh, Neural Comput. Appl. 31 (2019) 1173–1194.

    Article  Google Scholar 

  4. J.F. MacGregor, H. Yu, S. García Muñoz, J. Flores-Cerrillo, Comput. Chem. Eng. 29 (2005) 1217–1223.

    Article  Google Scholar 

  5. S. Han, N. Mannan, D.C. Stein, K.R. Pattipati, G.M. Bollas, J. Manuf. Syst. 61 (2021) 45–53.

    Article  Google Scholar 

  6. X. Xiu, Y. Yang, L. Kong, W. Liu, J. Process Control. 92 (2020) 212–219.

    Article  Google Scholar 

  7. L. Shi, Z.L. Li, T. Yu, J.P. Li, J. Iron Steel Res. Int. 18 (2011) No. 10, 13–16.

    Article  Google Scholar 

  8. J. Kivinen, A.J. Smola, R.C. Williamson, IEEE Trans. Signal Process. 52 (2004) 2165–2176.

    Article  MathSciNet  Google Scholar 

  9. M. Onel, C.A. Kieslich, Y.A. Guzman, C.A. Floudas, E.N. Pistikopoulos, Comput. Chem. Eng. 115 (2018) 46–63.

    Article  Google Scholar 

  10. L.M. Liu, M.X. Chu, R.F. Gong, X.Y. Qi, J. Iron Steel Res. Int. 27 (2020) 1407–1419.

    Article  Google Scholar 

  11. C. Gao, M.G. Shen, X.P. Liu, N.N. Zhao, M.X. Chu, J. Iron Steel Res. Int. 27 (2020) 42–54.

    Article  Google Scholar 

  12. Q. Dong, R. Kontar, M. Li, G. Xu, J. Xu, J. Manuf. Syst. 53 (2019) 291–304.

    Article  Google Scholar 

  13. Q. Qian, X. Fang, J. Xu, M. Li, J. Manuf. Syst. 61 (2021) 375–390.

    Article  Google Scholar 

  14. R. Fezai, M. Mansouri, O. Taouali, M. F. Harkat, N. Bouguila, J. Process Control. 61 (2018) 1–11.

    Article  Google Scholar 

  15. O. Taouali, I. Elaissi, H. Messaoud, Neural Comput. Appl. 21 (2012) 161–169.

    Article  Google Scholar 

  16. B. Cai, X. Sun, J. Wang, C. Yang, Z. Wang, X. Kong, Z. Liu, Y. Liu, J. Manuf. Syst. 57 (2020) 148–157.

    Article  Google Scholar 

  17. M. Yuan, P. Zhou, M.L. Li, R.F. Li, H. Wang, T.Y. Chai, J. Iron Steel Res. Int. 22 (2015) 487–495.

    Article  Google Scholar 

  18. Y. Tang, X. Wu, IEEE Trans. Image Process. 26 (2017) 1509–1520.

    Article  Google Scholar 

  19. Y. Du, D. Du, Comput. Chem. Eng. 115 (2018) 1–21.

    Article  Google Scholar 

  20. K. Zhong, M. Han, T. Qiu, B. Han, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020) 1581–1591.

    Article  MathSciNet  Google Scholar 

  21. X. Xie, W. Sun, K.C. Cheung, IEEE Trans. Knowl. Data Eng. 63 (2016) 2587–2594.

    Google Scholar 

  22. K.X Peng, L. Ma, K. Zhang, Acta Autom. Sin. 43 (2017) 349–365.

    Google Scholar 

  23. P. Wu, S. Lou, X. Zhang, J. He, Y. Liu, J. Gao, IEEE Trans. Ind. Inform. 17 (2021) 3324–3334.

    Article  Google Scholar 

  24. J.H. Cho, J.M. Lee, S. Wook Choi, D. Lee, I.B. Lee, Chem. Eng. Sci. 60 (2005) 279–288.

    Article  Google Scholar 

  25. S.W. Choi, C. Lee, J.M. Lee, J.H. Park, I.B. Lee, Chemometrics Intell. Lab. Syst. 75 (2005) 55–67.

    Article  Google Scholar 

  26. G. Li, S.J. Qin, Y. Ji, D. Zhou, Control Eng. Practice 18 (2010) 1211–1219.

    Google Scholar 

  27. C.F. Alcala, S.J. Qin, Ind. Eng. Chem. Res. 49 (2010) 7849–7857.

    Article  Google Scholar 

  28. K. Demertzis, L. Iliadis, E. Pimenidis, P. Kikiras, Neural Comput. Appl. 34 (2022) 15207–15220.

    Article  Google Scholar 

  29. G.E. Hinton, in: G. Montavon, G.B. Orr, K.R. Müller (Eds.), Neural Networks: Tricks of the Trade, Springer, Berlin, Heidelberg, Germany, 2012, pp. 599–619.

    Book  Google Scholar 

  30. G.E. Hinton, Neural Comput. 14 (2002) 1771–1800.

    Article  Google Scholar 

  31. J. Yang, W. Bao, X. Li, Y. Liu, neural Comput. Appl. 34 (2022) 9885–9899.

    Article  Google Scholar 

  32. H. Huang, L. Zhao, H. Huang, S. Guo, IEEE Commun. Mag. 58 (2020) 40–46.

    Google Scholar 

  33. H. Huang, S. Ding, L. Zhao, H. Huang, L. Chen, H. Gao, S.H. Ahmed, IEEE Internet Things J. 7 (2020) 5713–5722.

    Article  Google Scholar 

  34. P. Peng, Y. Wu, Y. Zhang, in: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, 1349–1354.

  35. A. Fischer, C. Igel, Pattern Recognit. 47 (2014) 25–39.

    Article  Google Scholar 

  36. G.E. Hinton, S. Osindero, Y.W. Teh, Neural Comput. 18 (2006) 1527–1554.

    Article  MathSciNet  Google Scholar 

  37. W. Hu, J. Gao, B. Li, O. Wu, J. Du, S. Maybank, IEEE Trans. Knowl. Data Eng. 32 (2020) 218–233.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key R&D Program of China (Grant No. 2020YFA0405700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Appendix

Appendix

1.1 A. Deduction of relationship between F and Fv statistic

There is a linear correlation between the sample free energy F and the variable free energy Fv. The proof is as follows.

The first term of Eq. (5) can be written as Eq. (14), that is, the first term of Eq. (5) is the linear addition of the first term of p Eq. (9).

$$\sum\limits_{i = 1}^{p} {\frac{{\left( {v_{i} - a_{i} } \right)^{2} }}{{2\sigma_{i}^{2} }}} = \frac{{\left( {v_{1} - a_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {v_{2} - a_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }} + \cdots \frac{{\left( {v_{p} - a_{p} } \right)^{2} }}{{2\sigma_{p}^{2} }}$$
(14)

The exponential term in the second term of Eq. (5) can be expanded as:

$$\begin{gathered} \sum\limits_{j = 1}^{q} {\left( {b_{j} + \sum\limits_{i = 1}^{p} {\frac{{w_{ji} v_{i} }}{{\sigma_{i} }}} } \right)} = b_{1} + w_{11} v_{1} /\sigma_{1} + w_{12} v_{2} /\sigma_{2} + \cdots + w_{1p} v_{{p}} /\sigma_{{p}} + b_{2} + w_{21} v_{1} /\sigma_{1} + w_{22} v_{2} /\sigma_{2} + \cdots + w_{2p} v_{{p}} /\sigma_{{p}} \\ + \cdots + b_{q} + w_{q1} v_{1} /\sigma_{1} + w_{q2} v_{2} /\sigma_{2} + \cdots + w_{qp} v_{{p}} /\sigma_{{p}} \\ \end{gathered}$$
(15)

The exponential term in the second term of Eq. (9) can be unfolded as:

$$\sum\limits_{j = 1}^{q} {\left( {b_{j} + \frac{{w_{ji} v_{i} }}{{\sigma_{i} }}} \right)} = b_{1} + w_{1i} v_{i} /\sigma_{i} + b_{2} + w_{2i} v_{i} /\sigma_{i} + \cdots + b_{q} + w_{qi} v_{i} /\sigma_{i}$$
(16)

Therefore, the relationship between Eqs. (15) and (16) is shown in Eq. (17):

$$\sum\limits_{j = 1}^{q} {\left( {b_{j} + \sum\limits_{i = 1}^{p} {\frac{{w_{ji} v_{i} }}{{\sigma_{i} }}} } \right)} { = }\sum\limits_{i = 1}^{p} {\sum\limits_{{{j} = 1}}^{{q}} {\left( {{b}_{{j}} + \frac{{{w}_{{{ji}}} {v}_{{i}} }}{{\sigma_{i} }}} \right)} - \left( {p - 1} \right)} \sum\limits_{{{\it{j}} = 1}}^{{\it{q}}} {{b}_{j}}$$
(17)

Let \(A = - \left( {p - 1} \right)\sum\limits_{{{j}} = 1}^{{q}}b_{j}\), and then the exponential term of Eq. (5) is the linear addition of p exponent terms of Eq. (9) plus a constant A.

In summary, the F statistic is the linear addition of the Fv statistics of all variables plus a constant C.

$$F{ = }\sum\limits_{i = 1}^{p} {Fv\left( {v_{i} } \right)} + C$$
(18)

where constant \(C \approx - \left( {p - 1} \right)\sum\limits_{{{j}} = 1}^{{q}}b_{j}\).

1.2 B. Monitoring results of traditional methods

See Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Qq., Qian, Qt., Li, M. et al. Monitoring and diagnosis of complex production process based on free energy of Gaussian–Bernoulli restricted Boltzmann machine. J. Iron Steel Res. Int. 30, 971–984 (2023). https://doi.org/10.1007/s42243-022-00867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00867-4

Keywords

Navigation