Skip to main content
Log in

Sintering kinetics involving grain growth and densification of Mg-PSZ nanopowders

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Sintering kinetics have been found to be effective in judging the evolution of ceramics. By using magnesium oxide-partially stabilized zirconia (Mg-PSZ) powder prepared by co-precipitation as raw materials, the evolution of densification and grain growth for Mg-PSZ ceramics were investigated. The results indicated that the densification of samples was mainly controlled by grain boundary diffusion in intermediate sintering stage. During the sintering process, the grain growth mechanisms included normal grain growth, abnormal grain growth and solid solution drag-controlled grain growth. Interestingly, the apparent activation energy for grain growth of Mg-PSZ ceramics is lower than that of ZrO2–Y2O3 ceramics in the solid solution drag-controlled grain grow process, which will cause grain to grow easily. The sintering kinetics and microstructure of Mg-PSZ ceramics were studied, and the kinetic equation of grain growth at different temperatures was established. The results show that the strength difference between Mg-PSZ and yttrium oxide-stabilized zirconia is closely related to the easy grain growth of Mg-PSZ ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.Q. Bai, S.Y. Liu, F.X. Mao, Y.Y. Zhang, X. Yang, Z.J. He, J. Iron Steel Res. Int. (2021) https://doi.org/10.1007/s42243-021-00695-y.

    Article  Google Scholar 

  2. T.P. Qu, D.Y. Wang, H.H. Wang, D. Hou, J. Tian, S.Y. Hu, L.J. Su, J. Iron Steel Res. Int. 28 (2021) 1149–1158.

    Article  Google Scholar 

  3. H. Biao. C.G. Lu, C.Y. Li, X.F. Qin, Y. Jin, J. Iron Steel Res. Int. 26 (2019) 926–940.

    Article  Google Scholar 

  4. R.C. Garvie, R.H.J. Hannink, R.T. Pascoe, Nature 258 (1975) 703–704.

    Article  Google Scholar 

  5. S.T. Gullati, J.D. Gullati, A.D. Davis, Am. Ceram. Soc. Bull. 59 (1980) 211–214, 219.

    Google Scholar 

  6. J. Lamon, A. Thorel, D. Broussaud, J. Mater. Sci. 21 (1986) 2277–2282.

    Article  Google Scholar 

  7. Y. Ling, Q. Li, H. Zheng, M. Omran, L. Gao, J. Chen, G. Chen, Ceram. Int. 47 (2020) 8067–8074.

    Article  Google Scholar 

  8. M. Iwase, A. Mclean, Solid State Ionics. 5 (1981) 571-574.

    Article  Google Scholar 

  9. J. Chevalier, A. Liens, H. Reveron, F. Zhang, P. Reynaud, T. Douillard, L. Preiss, V. Sergo, V. Lughi, M. Swain, N. Courtois, J. Am. Ceram. Soc. 103 (2020) 1482–1513.

    Article  Google Scholar 

  10. V. Lanteri, T.E. Mitchell, A.H. Heuer, J. Am. Ceram. Soc. 69 (1986) 564–569.

    Article  Google Scholar 

  11. C.S. Montross, J. Eur. Ceram. Soc. 11 (1993) 471–480.

    Article  Google Scholar 

  12. L. Jiang, S.Q. Guo, Y.Y. Bian, M. Zhang, W.Z. Ding, Ceram. Int. 42 (2016) 10593–10598.

    Article  Google Scholar 

  13. L. Jiang, S.Q. Guo, Y.Y. Bian, S. Chen, Y.L. Xu, Y.H. Liu, W.Z. Ding, Appl. Mech. Mater. 752–753 (2015) 109–112.

    Article  Google Scholar 

  14. W.S. Young, I.B. Cutler, J. Am. Ceram. Soc. 53 (1970) 659–663.

    Article  Google Scholar 

  15. M.N. Rahaman, Ceramic processing and sintering, 2nd ed., CRC Press, New York, USA, 2003.

    Google Scholar 

  16. A. Oishi, K. Ando, Y. Sakka, Lattice defect and oxygen self-diffusion in MgO-stabilized ZrO2, American Ceramic Society, Columbus, OH, USA, 1983.

    Google Scholar 

  17. P.C. Panda, J. Wang, R. Raj, J. Am. Ceram. Soc. 71 (1988) C-507-C-509.

    Article  Google Scholar 

  18. G.S.A. M. Theunissen, A.J.A. Winnubst, A.J. Burggraaf, J. Eur. Ceram. Soc. 11 (1993) 315–324.

    Article  Google Scholar 

  19. P.A. Beck, J.C. Kremer, L.J. Demer, M.L. Holzworth, Trans. Metal. Soc. AIME 175 (1948) 372–395.

    Google Scholar 

  20. M.A.C.G. Van De Graaf, J.H.H. Ter Maat, A.J. Brggraaf, J. Mater. Sci. 20 (1985) 1407–1418.

    Article  Google Scholar 

  21. R.J. Brook, J. Am. Ceram. Soc. 52 (1969) 56–57.

    Article  Google Scholar 

  22. A.J.A. Winnubst, P.J.M. Kroot, A.J. Burggraaf, J. Phys. Chem. Solids 44 (1983) 955–960.

    Article  Google Scholar 

  23. G.S.A.M. Theunissen, A.J.A. Winnubst, A.J. Burggraaf, J. Mater. Sci. Lett. 8 (1989) 55–57.

    Article  Google Scholar 

  24. T. Senda, R.C. Bradt, J. Am. Ceram. Soc. 73 (1990) 106–114.

    Article  Google Scholar 

  25. V. Gunay, O. Gelecek-Sulan, O.T. Ozkan, Ceram. Int. 30 (2004) 105–110.

    Article  Google Scholar 

  26. Z.P. Xie, Structure ceramics, Tsinghua University Press, Beijing, China, 2011.

    Google Scholar 

Download references

Acknowledgements

The work has been supported by the National Key Research and Development Program of China (No. 2017YFB0310401) and National Natural Science Foundation of China (Nos. U1908227 and U20A20239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-gang You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Ym., Lang, Jf., An, D. et al. Sintering kinetics involving grain growth and densification of Mg-PSZ nanopowders. J. Iron Steel Res. Int. 29, 1138–1144 (2022). https://doi.org/10.1007/s42243-022-00753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00753-z

Keywords

Navigation