Skip to main content

Advertisement

Log in

Roles of nanoscale precipitates and metastable austenite in determining strength and toughness of high-strength Nb-bearing steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of tempering temperature on the microstructure and mechanical properties of high-strength structural steel containing niobium were investigated to examine the roles of nanoscale precipitates and metastable austenite in determining the yield strength and toughness. After hot-rolling and quenching, three experimental steels were tempered at 590, 630, and 670 °C. During tempering, nanoscale Nb(C, N) precipitates were formed with the recovery of quenched martensite. The average diameters of Nb(C, N) precipitates increased from 5.4 to 8.2 nm as the tempering temperature was increased. Notably, reversed austenite with a volume fraction of 9% was formed at tempering temperatures up to 670 °C. The yield strengths of steel containing tempered martensite tempered at 590 and 630 °C were 965 and 831 MPa, and the tensile strengths were 998 and 879 MPa, respectively. However, the steel comprising reversed austenite and tempered martensite tempered at 670 °C showed continuous yielding behavior, affording yield and tensile strengths of 610 and 889 MPa, respectively. The impact energy increased from 105 to 260 J at − 60 °C with increasing tempering temperature. Reversed austenite improves low-temperature toughness by significantly increasing the crack propagation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 745 (2019) 126–136.

    Article  Google Scholar 

  2. Q. Zhou, Z. Li, Z.S. Wei, D. Wu, J.Y. Li, Z.Y. Shao, J. Iron Steel Res. Int. 26 (2019) 102–111.

    Article  Google Scholar 

  3. Y.H. Li, Z.H. Jiang, Z.D. Yang, J.S. Zhu, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 1346–1358.

  4. Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5 (2014) 3580.

    Article  Google Scholar 

  5. R.O. Ritchie, Nat. Mater. 10 (2011) 817–822.

    Article  Google Scholar 

  6. Y.J. Wang, J.J. Sun, T. Jiang, Y. Sun, S.W. Guo, Y.N. Liu, Acta Mater. 158 (2018) 247–256.

    Article  Google Scholar 

  7. L.D. Teng, T.T. Zhao, T.F. Cheng, Y.T. Yang, J. Iron Steel Res. Int. 27 (2020) 1456–1465.

    Article  Google Scholar 

  8. X.P. Ma, B. Langelier, B. Gault, S. Subramanian, Metall. Mater. Trans. A 48 (2017) 2460–2471.

    Article  Google Scholar 

  9. Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, R.D.K. Misra, Int. J. Miner. Metall. Mater. 27 (2020) 1–9.

    Article  Google Scholar 

  10. X.H. Han, C.L. Wang, Y.Y. Li, G. Liu, J. Iron Steel Res. Int. 26 (2019) 991–999.

    Article  Google Scholar 

  11. J. Klemm-Toole, J. Benz, S.W. Thompson, K.O. Findley, Mater. Sci. Eng. A 763 (2019) 138145.

  12. Z.J. Xie, C.J. Shang, X.L. Wang, X.P. Ma, S.V. Subramanian, R.D.K. Misra, Mater. Sci. Eng. A 727 (2018) 200–207.

    Article  Google Scholar 

  13. Y.H. Jiang, S. Yao, W. Liu, Y. Han, S.P. Liu, G. Tian, A.M. Zhao, J. Iron Steel Res. Int. 27 (2020) 981–991.

    Article  Google Scholar 

  14. H. Zheng, F. Hu, W. Zhou, O. Isayev, O. Hress, S. Yershov, K.M. Wu, Materials 12 (2019) 3718.

    Article  Google Scholar 

  15. X.L. Wang, X.M. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 649 (2016) 282–292.

    Article  Google Scholar 

  16. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, G.D.Wang, Mater. Sci. Eng. A 675 (2016) 153–163.

    Article  Google Scholar 

  17. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Met. Mater. Trans. A 35 (2004) 2331–2341.

    Article  Google Scholar 

  18. S. Turteltaub, A.S.J. Suiker, Int. J. Solids Struct. 43 (2006) 7322–7336.

    Article  Google Scholar 

  19. J. Hu, L.X. Du, Y. Dong, Q.W. Meng, R.D.K. Misra, Mater. Charact. 152 (2019) 21–35.

    Article  Google Scholar 

  20. W.L. Mo, X.B. Hu, S.P. Lu, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 31 (2015) 1258–1267.

    Article  Google Scholar 

  21. H. Dong, X.J. Sun, W.Q. Cao, Z.D. Liu, M.Q. Wang, Y.Q. Weng, Adv. Steels 45 (2011) 35–57.

    Article  Google Scholar 

  22. W.H. Zhou, X.L. Wang, P.K.C. Venkatsurya, H. Guo, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 607 (2014) 569–577.

    Article  Google Scholar 

  23. S.L. Chen, Z.X. Cao, C. Wang, C.X. Huang, D. Ponge, W.Q. Cao, J. Iron Steel Res. Int. 26 (2019) 1209–1218.

    Article  Google Scholar 

  24. X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154 (2018) 1–13.

    Article  Google Scholar 

  25. H. Koohdar, M. Nili-Ahmadabadi, M. Habibi-Parsa, H.R. Jafarian, T. Bhattacharjee, N. Tsuji, Metall. Mater. Trans. A 48 (2017) 5244–5257.

    Article  Google Scholar 

  26. M. Lei, W.J. Hui, J.J. Wang, Y.J. Zhang, X.L. Zhao, J. Iron Steel Res. Int. 27 (2020) 537–548.

    Article  Google Scholar 

  27. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.

    Article  Google Scholar 

  28. M.D. Mulholland, D.N. Seidman, Acta Mater. 59 (2011) 1881–1897.

    Article  Google Scholar 

  29. N. Zhong, X.D. Wang, Y.H. Rong, L. Wang, J. Mater. Sci. Technol. 22 (2006) 751–754.

    Google Scholar 

  30. K. Chen, Z.H. Jiang, F.B. Liu, J. Yu, Y. Li, W. Gong, C.Y. Chen, Mater. Sci. Eng. A 766 (2019) 138272.

  31. J. Dong, X.S. Zhou, Y.C. Liu, C. Li, C.X. Liu, Q.Y. Guo, Mater. Sci. Eng. A 683 (2017) 215–226.

    Article  Google Scholar 

  32. B. Fultz, J.I. Kim, Y.H. Kim, J.W. Morris, Metall. Trans. A 17 (1986) 967–972.

    Article  Google Scholar 

  33. M. Wang, Z.Y. Liu, C.G. Li, Acta Metall. Sin. (Engl. Lett.) 3 (2017) 238–249.

  34. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55 (2007) 6713–6723.

    Article  Google Scholar 

  35. D. De Knijf, C. Föjer, L.A.I. Kestens, R. Petrov, Mater. Sci. Eng. A 638 (2015) 219–227.

    Article  Google Scholar 

  36. M. Nurbanasari, P. Tsakiropoulos, E.J. Palmiere, ISIJ Int. 54 (2014) 1667–1676.

    Article  Google Scholar 

  37. J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, H. Li, Mater. Sci. Eng. A 690 (2017) 283–293.

    Article  Google Scholar 

  38. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, Z.S. Yan, Mater. Des. 36 (2012) 220–226.

    Article  Google Scholar 

  39. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, R.D.K. Misra, Mater. Charact. 136 (2018) 20–28.

    Article  Google Scholar 

  40. R. Schwab, V. Ruff, Acta Mater. 61 (2013) 1798–1808.

    Article  Google Scholar 

  41. Z.J. Xie, B. Langelier, Y.T. Tsai, C.J. Shang, J.R. Yang, S.V. Subramanian, X.P. Ma, X.L. Wang, Mater. Sci. Eng. A 763 (2019) 138149.

  42. T. Gladman, J. Mater. Sci. Technol. 15 (1999) 30–36.

    Article  Google Scholar 

  43. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44 (2004) 1945–1951.

    Article  Google Scholar 

  44. G. Ghosh, G.B. Olson, Acta Mater. 50 (2002) 2655–2675.

    Article  Google Scholar 

  45. L. Fan, T.L. Wang, Z.B. Fu, S.M. Zhang, Q.F. Wang, Mater. Sci. Eng. A 607 (2014) 559–568.

    Article  Google Scholar 

  46. J. Hu, L.X. Du, H. Liu, G.S. Sun, H. Xie, H.L. Yi, R.D.K. Misra, Mater. Sci. Eng. A 647 (2015) 144–151.

    Article  Google Scholar 

  47. Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, B.Y. Hou, Mater. Sci. Eng. A 711 (2018) 397–404.

    Article  Google Scholar 

  48. G.Q. Su, X.H. Gao, T. Yan, D.Z. Zhang, C.S. Cui, L.X. Du, Z.G. Liu, Y. Tang, J. Hu, Mater. Sci. Eng. A 736 (2018) 417–430.

    Article  Google Scholar 

  49. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, G.Z. Wang, Mater. Sci. Eng. A 707 (2017) 270–279.

    Article  Google Scholar 

  50. M.S. Joo, D.W. Suh, J.H. Bae, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 546 (2012) 314–322.

    Article  Google Scholar 

  51. X.L. Yang, Y.B. Xu, X.D. Tan, D. Wu, Mater. Sci. Eng. A 641 (2015) 96–106.

    Article  Google Scholar 

  52. J.I. Verdeja, J. Asensio, J.A. Pero-Sanz, Mater. Charact. 50 (2003) 81–86.

    Article  Google Scholar 

  53. D.V. Edmonds, R.C. Cochrane, Metall. Trans. A 21 (1990) 1527–1540.

    Article  Google Scholar 

  54. D. Frear, J.W. Morris, Metall. Trans. A 17 (1986) 243–252.

    Article  Google Scholar 

  55. Y. Ohmori, H. Ohtani, T. Kunitake, Met. Sci. 8 (1974) 357–366.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the National Key R&D Program of China (Grant No. 2017YFB0305300), and the Joint Fund project of the Ministry of Education for Equipment Pre-research (6141A020222).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhou or Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Qb., Zhou, C., Hu, J. et al. Roles of nanoscale precipitates and metastable austenite in determining strength and toughness of high-strength Nb-bearing steel. J. Iron Steel Res. Int. 29, 1646–1658 (2022). https://doi.org/10.1007/s42243-021-00735-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00735-7

Keywords

Navigation