Skip to main content
Log in

Physicochemical properties and structure of titania-containing metallurgical slags: a review

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The titanium industry can hardly bypass the titania-containing slags, and the slag physicochemical properties are essential in the metallurgical reactor design and process control. The TiO2–FeO-based slags and TiO2–SiO2–CaO-based slags are the main metallurgical slag systems in the titanium resource utilization processes. To elaborate the role of TiO2 in the physicochemical properties of titania-containing metallurgical slags, the physicochemical properties including titanium redox ratio, liquidus temperature, viscosity, electrical conductivity, density, surface tension, thermal conductivity, and sulfide capacity were critically reviewed. Moreover, the property prediction models were briefly introduced with regards to the limitations of the existing models. The property prediction models are still required to evolve since not all properties of titania-containing slags can be well modeled. As the slag structure has an intimate relationship with slag properties, the structural details of the titania-containing slag were investigated by using a combination of spectroscopic technologies, but the knowledge of the slag structure was not fully ascertained. The potential research fields related to the physicochemical properties and structure of the titania-containing slags were also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Knittel, B.C. James, Kirk-Othmer Encyclopedia of Chemical Technology 23 (1983) 98–130.

    Google Scholar 

  2. R.L. Rudnick, S. Gao, Treatise Geochem. 3 (2003) 659.

    Google Scholar 

  3. W. Zhang, Z. Zhu, C.Y. Cheng, Hydrometallurgy 108 (2011) 177–188.

    Google Scholar 

  4. US Geological Survey, Mineral Commodity Summaries 2021, https://pubs.er.usgs.gov/publication/mcs2021.

  5. H. Sun, J. Wang, X. Dong, Q. Xue, Met. Int. 17 (2012) 49–56.

    Google Scholar 

  6. G. Buxbaum, Industrial inorganic pigments, John Wiley & Sons, USA, 2008.

    Google Scholar 

  7. T. Ikeshima, Titanium Science and Technology 1 (1984) 3–14.

    Google Scholar 

  8. M. Pourabdoli, S. Raygan, H. Abdizadeh, K. Hanaei, Int. J. Miner. Process. 78 (2006) 175–181.

    Google Scholar 

  9. Z.F. Yuan, X. Yang, Z.X. Lu, J.N. Huang, Y.F. Pan, E.X. Ma, J. Iron Steel Res. Int. 14 (2007) No. 3, 1–6.

    Google Scholar 

  10. K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand, J. van der Stel, Trans. Ind. Inst. Met. 66 (2013) 475–481.

    Google Scholar 

  11. K. Hu, X. Lv, S. Li, W. Lv, B. Song, K. Han, Metall. Mater. Trans. B 49 (2018) 1963–1973.

    Google Scholar 

  12. C.G. Bai, Study on some physical chemistry problems of blast furnace slag-bearing titania, College of Materials Science and Engineering, Chongqing University, Chongqing, China, 2003.

  13. G. Tranell, O. Ostrovski, S. Jahanshahi, in: Proc. 5th Int. Conf. “Molten slags, fluxes and salts”, Iron and Steel Society, Sydney, Australia, 1997, pp. 501–506.

  14. G. Tranell, O. Ostrovski, S. Jahanshahi, Metall. Mater. Trans. B 33 (2002) 61–67.

    Google Scholar 

  15. W.D. Johnston, J. Am. Ceram. Soc. 48 (1965) 184–190.

    Google Scholar 

  16. H.D. Schreiber, T. Thanyasiri, J.J. Lach, R.A. Legere, Phys. Chem. Glasses 19 (1978) 126–139.

    Google Scholar 

  17. J. Tanabe, H. Suito, Steel Res. 63 (1992) 515–520.

    Google Scholar 

  18. C. Ariyo, P. Gonzalez, L. Holappa, Steel Res. Int. 76 (2005) 284–287.

    Google Scholar 

  19. K. Hu, X. Lv, Z. Yan, W. Lv, R. Zhang, J. Dang, Z. You, Metall. Mater. Trans. B 50 (2019) 1841–1851.

    Google Scholar 

  20. J. Pesl, R.H. Eriç, Metall. Mater. Trans. B 30 (1999) 695–705.

    Google Scholar 

  21. J.M.A. Geldenhuis, P.C. Pistorius, J.S. Afr. Inst. Min. Metall. 99 (1999) 41–47.

    Google Scholar 

  22. K. Ito, N. Sano, Tetsu-to-Hagane 67 (1981) 2131–2137.

    Google Scholar 

  23. Y. Morizane, B. Ozturk, R.J. Fruehan, Metall. Mater. Trans. B 30 (1999) 29–43.

    Google Scholar 

  24. P.C. Pistorius, J.S. Afr. Inst. Min. Metall. 108 (2008) 35–43.

    Google Scholar 

  25. H. Kotzé, J.S. Afr. Inst. Min. Metall. 120 (2020) 121–130.

    Google Scholar 

  26. P.C. Pistorius, C. Coetzee, Metall. Mater. Trans. B 34 (2003) 581–588.

    Google Scholar 

  27. S. Seim, Experimental investigations and phase relations in the liquid FeTiO3–Ti2O3–TiO2 slag system, Department of Materials Technology, NTNU, Norway, 2011.

  28. Z. Yan, X. Lv, W. He, J. Xu, ISIJ Int. 57 (2017) 31–36.

    Google Scholar 

  29. W.Z. Wang, K. Yu, J. Northeast. Univ. (Nat. Sci.) (1984) No. 4, 41–48.

  30. Z. Pang, X. Lv, J. Ling, Y. Jiang, Z. Yan, J. Dang, Metall. Mater. Trans. B 51 (2020) 2348–2357.

    Google Scholar 

  31. Z. Pang, X. Lv, Y. Jiang, J. Ling, Z. Yan, Metall. Mater. Trans. B 51 (2020) 722–731.

    Google Scholar 

  32. M.G. Frohberg, R. Weber, Steel Res. Int. 36 (1965) 477–480.

    Google Scholar 

  33. A. Ohno, H.U. Ross, Can. Metall. Quart. 2 (1963) 259–279.

    Google Scholar 

  34. H. Park, J.Y. Park, G.H. Kim, I. Sohn, Steel Res. Int. 83 (2012) 150–156.

    Google Scholar 

  35. J.L. Liao, J. Li, X.D. Wang, Z.T. Zhang, Ironmak. Steelmak. 39 (2012) 133–139.

    Google Scholar 

  36. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, D.J. Min, ISIJ Int. 52 (2012) 158–160.

    Google Scholar 

  37. G. Handfield, G.G. Charette, Can. Metall. Quart. 10 (1971) 235–243.

    Google Scholar 

  38. M. Kato, S. Minowa, Trans. Iron Steel Inst. Jpn. 9 (1969) 31–38.

    Google Scholar 

  39. Y.U.P. Nikitin, V.M. Lopatin, L.N. Barmin, Steel USSR 3 (1973) No. 2, 122.

  40. G. Handfield, G.G. Charette, H.Y. Lee, JOM 24 (1972) 37–40.

    Google Scholar 

  41. D. Xie, Y. Mao, Y. Zhu, in: VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, Cape Town, South Africa, 2004, pp. 43–50.

  42. J. Van der Colf, D.D. Howat, J.S. Afr. Inst. Min. Metall. 79 (1979) 255–263.

    Google Scholar 

  43. K. Mills, The estimation of slag properties, Department of Materials, Imperial College, London, UK, 2011.

  44. C. Han, M. Chen, W. Zhang, Z. Zhao, T. Evans, B. Zhao, Metall. Mater. Trans. B 47 (2016) 2861–2874.

    Google Scholar 

  45. R. Khanna, V. Sahajwalla, Treatise on process metallurgy, Volume 1: process fundamentals, Elsevier Cambridge, 2013.

  46. G. Wu, Modelling and experimental validation of the viscosity of liquid phases in oxide systems relevant to fuel slags, Forschungszentrum Jülich GmbH, Zentralbibliothek, Germany, 2015.

  47. L. Gan, J. Xin, Y. Zhou, ISIJ Int. 57 (2017) 1303–1312.

    Google Scholar 

  48. P.V. Riboud, Y. Roux, L.D. Lucas, H. Gaye, Fachber. Huttenprax. Metallweiterverarbei. 19 (1981) 859–869.

    Google Scholar 

  49. T. Iida, H. Sakai, Y. Kita, K. Shigeno, ISIJ Int. 40 (2000) S110–S114.

    Google Scholar 

  50. G. Urbain, Steel Res. 58 (1987) 111–116.

    Google Scholar 

  51. G. Urbain, F. Cambier, M. Deletter, M.R. Anseau, Trans. J. Br. Ceram. Soc. 80 (1981) 139–141.

    Google Scholar 

  52. K.C. Mills, S. Sridhar, Ironmak. Steelmak. 26 (1999) 262–268.

    Google Scholar 

  53. G.H. Zhang, K.C. Chou, J.L. Zhang, Ironmak. Steelmak. 41 (2014) 47–50.

    Google Scholar 

  54. Q.F. Shu, X. Zhang, K.C. Chou, Ironmak. Steelmak. 42 (2015) 641–647.

    Google Scholar 

  55. Z. Yan, R.G. Reddy, X. Lv, Z. Pang, W. He, Ironmak. Steelmak. 47 (2020) 203–209.

    Google Scholar 

  56. H. Fan, D. Chen, P. Liu, H. Duan, Y. Huang, M. Long, T. Liu, J. Non-Cryst. Solids 493 (2018) 57–64.

    Google Scholar 

  57. T. Wu, S. He, Y. Liang, Q. Wang, J. Non-Cryst. Solids 411 (2015) 145–151.

    Google Scholar 

  58. Y. Kim, C. Nam, S. Kim, H. Jeon, J. Non-Cryst. Solids 552 (2021) 120308.

    Google Scholar 

  59. K. Hu, K. Tang, X. Lv, J. Safarian, Z. Yan, B. Song, Metall. Mater. Trans. B 52 (2021) 245–254.

    Google Scholar 

  60. A. Einstein, Ann. Phys. 19 (1906) 289–306.

    Google Scholar 

  61. R. Roscoe, Br. J. Appl. Phys. 3 (1952) 267.

    Google Scholar 

  62. Y.L. Zhen, G.H. Zhang, K.C. Chou, Metall. Mater. Trans. B 46 (2015) 155–161.

    Google Scholar 

  63. G.H. Zhang, Y.L. Zhen, K.C. Chou, ISIJ Int. 55 (2015) 922–927.

    Google Scholar 

  64. A. Grau, D. Poggi, Canadian Institute of Mining and Metallurgy, Metallurgical Society of CIM Annual Volume Featuring “Hydrogen in Metals” and “Titanium” 17 (1978) 97–102.

  65. R. Desrosiers, F. Ajersch, A. Grau, Electrical conductivity of industrial slags of high titania content, in: Proceedings of International Symposium on Metallurgical Slags, Part of the 19th Annual Conference of Metallurgists, Canadian Institute of Mining and Metallugy, Nova Scotia, Canada, 1980.

  66. K. Hu, X. Lv, W. Yu, Z. Yan, W. Lv, S. Li, Metall. Mater. Trans. B 50 (2019) 2982–2992.

    Google Scholar 

  67. K. Mori, Tetsu-to-Hagane 42 (1956) 1024–1029.

    Google Scholar 

  68. S.I. Denisov, V.S. Degtyarev, V.A. Reznichenko, Izvest. Akad. Nauk SSSR Metally 1 (1970) 80–82.

    Google Scholar 

  69. H. Inouye, J.W. Tomlinson, J. Chipman, Trans. Faraday Soc. 49 (1953) 796–801.

    Google Scholar 

  70. V.A. Reznichenko, Izvest. Akad. Nauk SSSR Metally 5 (1967) 43–57.

    Google Scholar 

  71. K. Narita, T. Onoye, T. Ishii, K.I. Uemura, Tetsu-to-Hagane 61 (1975) 2943–2951.

    Google Scholar 

  72. N. Shinozaki, K. Mizoguchi, Y. Suginohara, J. Jpn. Inst. Met. 42 (1978) 162–168.

    Google Scholar 

  73. Y.H. Shi, J.C. Wang, Iron Steel Vanadium Titanium (1987) No. 1, 56–60.

  74. N.F. Mott, J. Non-Cryst. Solids 1 (1968) 1–17.

    Google Scholar 

  75. P.P. Evseev, A.F. Filippov, Izv. Vyssh. Uchebn. Zaved. Chern. Met. (1967) No. 3, 55–59.

  76. K. Mori, Tetsu-to-Hagane 46 (1960) 134–140.

    Google Scholar 

  77. A.S. Churkin, Y.M. Tsikarev, G.A. Toporishchev, V.I. Lazarev, G.A. Khasin, Protsessov (Sverdlovsk) 7 (1979) 40–47.

    Google Scholar 

  78. B.M. Lepinskikh, V.I. Musikhin, I.L. Korkiya, Trudy. Inst. Met. Sverdlovsk 18 (1969) 247–259.

    Google Scholar 

  79. I.D. Sommerville, H.B. Bell, Can. Metall. Quart. 21 (1982) 145–155.

    Google Scholar 

  80. Q. Jiao, N.J. Themelis, Metall. Trans. B 19 (1988) 133–140.

    Google Scholar 

  81. G.H. Zhang, B.J. Yan, K.C. Chou, F.S. Li, Metall. Mater. Trans. B 42 (2011) 261–264.

    Google Scholar 

  82. G.H. Zhang, K.C. Chou, Metall. Mater. Trans. B 41 (2010) 131–136.

    Google Scholar 

  83. D.R. Gaskell, D.E. Laughlin, Introduction to the thermodynamics of materials, 6th ed., CRC Press, Boca Raton, USA, 2017.

    Google Scholar 

  84. D.B. Dingwell, J. Am. Ceram. Soc. 74 (1991) 2718–2719.

    Google Scholar 

  85. N. Ikemiya, J. Umemoto, S. Hara, K. Ogino, ISIJ Int. 33 (1993) 156–165.

    Google Scholar 

  86. J. Xin, L. Gan, N. Wang, M. Chen, Metall. Mater. Trans. B 50 (2019) 2828–2842.

    Google Scholar 

  87. Y. Liu, X. Lv, C. Bai, X. Zhang, ISIJ Int. 54 (2014) 2017–2024.

    Google Scholar 

  88. Z.D. Pang, Y.Y. Jiang, J.W. Ling, X.W. Lv, Z.M. Yan. Int. J. Miner. Metall. Mater. (2021). https://doi.org/10.1007/s12613-021-2262-x.

    Article  Google Scholar 

  89. S.A. Nelson, I.S.E. Carmichael, Contrib. Mineral Petrol. 71 (1979) 117–124.

    Google Scholar 

  90. R.A. Lange, I.S.E. Carmichael, Geochim. Cosmochim. Acta 51 (1987) 2931–2946.

    Google Scholar 

  91. K.C. Mills, B.J. Keene, Int. Mater. Rev. 32 (1987) 1–120.

    Google Scholar 

  92. Y. Linard, H. Nonnet, T. Advocat, J. Non-Cryst. Solids 354 (2008) 4917–4926.

    Google Scholar 

  93. P. Kozakevitch, Mem. Sci. Rev. Metall. XLVI-8 (1949) 505–516.

  94. A.I. Bochorishvili, S.B. Yakobashvili, Svarochnoe Proizvodstvo 1 (1968) 13–15.

    Google Scholar 

  95. S.I. Popel, A.A. Deryabin, L.N. Saburov, M.V. Tarkhanov, Tr. Uralsk. Nauchno-Issled. Inst. Chern. Metal 12 (1971) 92.

    Google Scholar 

  96. Y. Liu, X. Lv, C. Bai, B. Yu, ISIJ Int. 54 (2014) 2154–2161.

    Google Scholar 

  97. Y.K. Zhu, Y.W. Mao, Z.X. Guo, G.H. Wang, Y.L. Dong, Iron Steel Vanadium Titanium (1983) No. 1, 14–18.

  98. R.E. Boni, G. Derge, JOM 8 (1956) 53–59.

    Google Scholar 

  99. K.C. Mills, in: American Chemical Society Symposium Series Vol. 301, ACS, Washington DC, USA, 1986, pp. 195–214.

  100. M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, M. Hamalainen, ISIJ Int. 47 (2007) 1075–1081.

    Google Scholar 

  101. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, M. Hamalainen, ISIJ Int. 47 (2007) 38–43.

    Google Scholar 

  102. M. Nakamoto, T. Tanaka, L. Holappa, M. Hamalainen, ISIJ Int. 47 (2007) 211–216.

    Google Scholar 

  103. T. Tanaka, Thermodynamics of surface: relationship between surface properties and thermodynamic properties in bulk, Bulletin of Iron & Steel Institute of Japan, 2003.

  104. Y. Liu, X. Lv, C. Bai, in: J.S. Carpenter (Eds.), Characterization of Minerals, Metals, and Materials, Springer, 2015, pp. 217–224.

  105. H. Kotzé, P.C. Pistorius, J.S. Afr. Inst. Min. Metall. 110 (2010) 57–66.

    Google Scholar 

  106. J. Heimo, A. Jokilaakso, M. Kekkonen, M. Tangstad, A. Støre, Metall. Res. Technol. 116 (2019) 635.

    Google Scholar 

  107. C.J.B. Fincham, F.D. Richardson, Proc. R. Soc. Lond. A 223 (1954) 40–62.

    Google Scholar 

  108. X. Tang, C. Xu, ISIJ Int. 35 (1995) 367–371.

    Google Scholar 

  109. J. Ling, Z. Pang, Y. Jiang, Z. Yan, X. Lv, Metall. Mater. Trans. B 52 (2021) 2786–2795.

    Google Scholar 

  110. I. Ghita, H.B. Bell, Ironmak. Steelmak. 9 (1982) 239–243.

    Google Scholar 

  111. S.D. Brown, R.J. Roxburgh, I. Ghita, H.B. Bell, Ironmak. Steelmak. 9 (1982) 163–167.

    Google Scholar 

  112. M. Ito, K. Morita, N. Sano, ISIJ Int. 37 (1997) 839–843.

    Google Scholar 

  113. J.A. Duffy, M.D. Ingram, I.D. Sommerville, J. Chem. Soc., Faraday Trans. 74 (1978) 1410–1419.

    Google Scholar 

  114. D.J. Sosinsky, I.D. Sommerville, Metall. Trans. B 17 (1986) 331–337.

    Google Scholar 

  115. G.H. Zhang, K.C. Chou, U. Pal, ISIJ Int. 53 (2013) 761–767.

    Google Scholar 

  116. R.W. Young, Use of optical basicity concept for determining phosphorus and sulfur slag metal partitions, Technical Steel Research, Commission of European Communities, London, UK, 1991.

  117. J.A. Duffy, M.D. Ingram, J. Am. Chem. Soc. 93 (1971) 6448–6454.

    Google Scholar 

  118. J. Duffy, Ironmak. Steelmak. 16 (1989) 426–428.

    Google Scholar 

  119. Y.B. Kang, A.D. Pelton, Metall. Mater. Trans. B 40 (2009) 979–994.

    Google Scholar 

  120. R. Moretti, G. Ottonello, Metall. Mater. Trans. B 34 (2003) 399–410.

    Google Scholar 

  121. M.M. Nzotta, D. Sichen, S. Seetharaman, ISIJ Int. 38 (1998) 1170–1179.

    Google Scholar 

  122. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, H.J. Guo, ISIJ Int. 50 (2010) 1362–1372.

    Google Scholar 

  123. A. Ma, S. Mostaghel, K. Chattopadhyay, ISIJ Int. 57 (2017) 114–122.

    Google Scholar 

  124. Z.C. Xin, J.S. Zhang, W.H. Lin, J.G. Zhang, Y. Jin, J. Zheng, J.F. Cui, Q. Liu, Ironmak. Steelmak. (2020) 275–283.

  125. B. Mysen, P. Richet, Silicate glasses and melts: properties and structure, Elsevier, 2005.

  126. K.C. Mills, M. Hayashi, L. Wang, T. Watanabe, in: S. Seetharaman (Eds.), Treatise on Process Metallurgy, Vol. 1: Process Fundamentals, Elsevier, 2014, pp. 149–286.

  127. I. Sohn, D.J. Min, Steel Res. Int. 83 (2012) 611–630.

    Google Scholar 

  128. M. Sajid, C. Bai, M. Aamir, Z. You, Z. Yan, X. Lv, ISIJ Int. 59 (2019) 1153–1166.

    Google Scholar 

  129. V.Van Hoang, Phys. Status Solidi B 244 (2007) 1280–1287.

    Google Scholar 

  130. G.S. Henderson, M.E. Fleet, The Canadian Mineralogist 33 (1995) 399–408.

    Google Scholar 

  131. D. Li, G.M. Bancroft, M.E. Fleet, X.H. Feng, Phys. Chem. Miner. 22 (1995) 115–122.

    Google Scholar 

  132. G.S. Henderson, X. Liu, M.E. Fleet, Phys. Chem. Miner. 29 (2002) 32–42.

    Google Scholar 

  133. B. Mysen, D. Neuville, Geochim. Cosmochim. Acta 59 (1995) 325–342.

    Google Scholar 

  134. L. Cormier, G. Calas, D.R. Neuville, R. Bellissent, J. Non-Cryst. Solids 293–295 (2001) 510–516.

    Google Scholar 

  135. S. Kroeker, D. Rice, J.F. Stebbins, Am. Miner. 87 (2002) 572–579.

    Google Scholar 

  136. F. Farges, G.E. Brown Jr., A. Navrotsky, H. Gan, J.J. Rehr, Geochim. Cosmochim. Acta 60 (1996) 3039–3053.

    Google Scholar 

  137. B.O. Mysen, F.J. Ryerson, D. Virgo, Am. Miner. 65 (1980) 1150–1165.

    Google Scholar 

  138. K. Zheng, J. Liao, X. Wang, Z. Zhang, J. Non-Cryst. Solids 376 (2013) 209–215.

    Google Scholar 

  139. S. Zhang, X. Zhang, C. Bai, L. Wen, X. Lv, ISIJ Int. 53 (2013) 1131–1137.

    Google Scholar 

  140. S. Zhang, X. Zhang, W. Liu, X. Lv, C. Bai, L. Wang, J. Non-Cryst. Solids 402 (2014) 214–222.

    Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the support from the National Key R&D Program of China (No. 2018YFC1900500) and EPSRC (UK) under the grant number EP/N011368/1 (EPSRC Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-wei Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Zm., Lv, Xw. & Li, Zs. Physicochemical properties and structure of titania-containing metallurgical slags: a review. J. Iron Steel Res. Int. 29, 187–206 (2022). https://doi.org/10.1007/s42243-021-00678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00678-z

Keywords

Navigation