Skip to main content
Log in

Feature selection of BOF steelmaking process data by using an improved grey wolf optimizer

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) steelmaking end-point control using soft measurement models has essential value for economy and environment. However, the high-dimensional and redundant data of the BOF collected by the sensors will hinder the performance of models. The traditional feature selection results based on meta-heuristic algorithms cannot meet the stability of actual industrial applications. In order to eliminate the negative impact of feature selection application in the BOF steelmaking, an improved grey wolf optimizer (IGWO) for feature selection was proposed, and it was applied to the BOF data set. Firstly, the proposed algorithm preset the size of the feature subset based on the new encoding scheme, rather than the traditional uncertain number strategy. Then, opposition-based learning was used to initialize the grey wolf population so that the initial population was closer to the potential optimal solution. In addition, a novel population update method retained the features closely related to the best three grey wolves and probabilistically updated irrelevant features through measurement or random methods. These methods were used to search feature subsets to maximize search capability and stability of algorithm on BOF steelmaking data. Finally, the proposed algorithm was compared with other feature selection algorithms on the BOF data sets. The results show that the proposed IGWO can stably select the feature subsets that are conductive to the end-point regression accuracy control of BOF temperature and carbon content, which can improve the performance of the BOF steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.D. Jiang, in: 2008 National Steelmaking–Continuous Casting Production Technology Conference, The Chinese Society for Metals, Hangzhou, China, 2008, pp. 179–183.

  2. M. Han, C. Liu, Appl. Soft Comput. 19 (2014) 430–437.

    Article  Google Scholar 

  3. Y.M. Shao, M.C. Zhou, Y.R. Chen, Q. Zhao, S. Zhao, Optik 125 (2014) 2491–2496.

    Article  Google Scholar 

  4. H.Y. Wen, Q. Zhao, Y. Chen, M.C. Zhou, M. Zhang, Chinese Journal of Scientific Instrument 8 (2008) 1633–1637.

    Google Scholar 

  5. I.J. Cox, R.W. Lewis, R.S. Ransing, H. Laszczewski, G. Berni, J. Mater. Process. Technol. 120 (2002) 310–315.

    Article  Google Scholar 

  6. C. Kubat, H. Taşkin, R. Artir, A. Yilmaz, Robot. Auto. Syst. 49 (2004) 193–205.

    Article  Google Scholar 

  7. A.P. Cunha, T.A. Pacianotto, A.M. Frattini Fileti, Comput. Aided Chem. Eng. 18 (2004) 631–636.

  8. K.X. Peng, J. Zhang, J. Dong, Appl. Mech. Mater. 20–23 (2010) 796–800.

    Article  Google Scholar 

  9. S.M. Xie, J. Tao, T.Y. Chai, Control Theory Appl. 6 (2003) 903–907.

    Google Scholar 

  10. I. Guyon, A. Elisseeff, J. Mach. Learn. Res. 3 (2003) 1157–1182.

    Google Scholar 

  11. N. Székely, Period. Polytech. Electr. Eng. (Archives) 47 (2003) 141–147.

    Google Scholar 

  12. G. Chandrashekar, F. Sahin, Comput. Electr. Eng. 40 (2014) No. 1, 16–28.

    Article  Google Scholar 

  13. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Mach. Learn. 46 (2002) 389–422.

    Article  Google Scholar 

  14. G. Attigeri, M.M. Manohara Pai, R.M. Pai, J. Inform. Process. Syst. 15 (2019) 1306–1325.

    Google Scholar 

  15. P. Zhang, Appl. Soft Comput. 85 (2019) 105–859.

    Google Scholar 

  16. I. Fister Jr., X.S. Yang, I. Fister, J. Brest, D. Fister, Neural Evol. Comput. 80 (2013) No. 3, 1–7.

    Google Scholar 

  17. A.E. Hegazy, M.A. Makhlouf, G.S. El-Tawel, J. King Saud Univ. Comput. Inform. Sci. 3 (2019) 335–344.

  18. S. Mirjalili, Knowl. Based Syst. 89 (2015) 228–249.

    Article  Google Scholar 

  19. E. Emary, Zawbaa, M. Hossam, Hassanien, E. Aboul, Neurocomputing 12 (2016) 54–65.

    Article  Google Scholar 

  20. J.P. Papa, G.H. Rosa, A.N. de Souza, L.C.S. Afonso, Comput. Electr. Eng. 72 (2018) 468–481.

    Article  Google Scholar 

  21. S. Mirjalili, S.M. Mirjalili, M. Seyed, A. Hatamlou, Neural Comput. Appl. 27 (2016) 495–513.

    Article  Google Scholar 

  22. J. Zheng, C. Lu, L. Gao, Appl. Soft Comput. 77 (2019) 106–117.

    Article  Google Scholar 

  23. M. Mafarja, I. Aljarah, A.A. Heidari, H. Faris, P. Fournier-Viger, X. Li, S. Mirjalili, Knowl.-Based Syst. 161 (2018) 185–204.

    Article  Google Scholar 

  24. G.M.A. Soliman, T.H.M. Abou-El-Enien, E. Emary, M.M.H. Khorshid, Ingénierie des Systèmes d'Information 24 (2019) 281–287.

    Article  Google Scholar 

  25. S. Arora, P. Anand, Expert Syst. Appl. 116 (2019) 147–160.

    Article  Google Scholar 

  26. S. Mirjalili, S.M. Mirjalili, A. Lewis, Adv. Eng. Software 69 (2014) 46–61.

    Article  Google Scholar 

  27. C. Lu, L. Gao, J. Yi, Expert Syst. Appl. 107 (2018) 89–114.

    Article  Google Scholar 

  28. C. Lu, L. Gao, Q.K. Pan, X.Y. Li, J. Zheng, Appl. Soft Comput. 75 (2019) 728–749.

    Article  Google Scholar 

  29. C. Lu, L. Gao, X.Y. Li, C.Y. Hu, X.S. Yan, W.Y. Gong, Memet. Comput. 12 (2020) 371–398.

    Article  Google Scholar 

  30. W. Long, J.J. Jiao, X.M. Liang, M.Z. Tang, Eng. Appl. Artif. Intell. 68 (2018) 63–80.

    Article  Google Scholar 

  31. D.H. Wolpert, W.G. Macready, IEEE Trans. Evolut. Comput. 1 (2013) 67–82.

    Article  Google Scholar 

  32. A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Future Gener. Comp. Syst. 97 (2019) 849–872.

    Article  Google Scholar 

  33. S. Mirjalili, A. Lewis, Adv. Eng. Software 95 (2016) 51–67.

    Article  Google Scholar 

  34. S. Mirjalili, Knowl. Based Syst. 96 (2016) 120–133.

    Article  Google Scholar 

  35. F. Yan, J.Z. Xu, F.S. Li, J. Electr. Inform. Technol. 41 (2019) 872–879.

    Google Scholar 

  36. H. Mehrotra, S.K. Pal, Soft Comput. Probl. Solving 816 (2019) 25–43.

    Article  Google Scholar 

  37. C. Zhang, W. Wang, Y. Pan, Sensors 20 (2020) No. 15, 40–65.

    Google Scholar 

  38. S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, Expert Syst. Appl. 151 (2020) 113389.

    Article  Google Scholar 

  39. E. Emary, H.M. Zawbaa, A.E. Hassanien, Neurocomputing 172 (2016) 371–381.

    Article  Google Scholar 

  40. H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Neural Comput. Appl. 30 (2018) 413–435.

    Article  Google Scholar 

  41. X.F. Zhang, X.F. Wang, Comput. Sci. 46 (2019) No. 3, 30–38.

    Google Scholar 

  42. H.R. Tizhoosh, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, IEEE, Vienna, Austria, 2005, pp. 695–701.

  43. L.Y. Chuang, H.W. Chang, C.J. Tu, C.H. Yang, Comput. Biol. Chem. 32 (2008) 29–38.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61863018) and the Applied Basic Research Programs of Yunnan Science and Technology Department (Grant No. 202001AT070038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zx., Liu, H. & Qi, L. Feature selection of BOF steelmaking process data by using an improved grey wolf optimizer. J. Iron Steel Res. Int. 29, 1205–1223 (2022). https://doi.org/10.1007/s42243-021-00673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00673-4

Keywords

Navigation