Skip to main content
Log in

Softening–melting–dripping characteristics and evolution mechanism of vanadium-bearing titanomagnetite carbon composite briquette used as novel blast furnace burden

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Vanadium-bearing titanomagnetite carbon composite briquette (VTM-CCB) was proposed as an innovative and promising blast furnace burden to realize low-carbon and high-efficiency ironmaking. To optimize the compositions of VTM-CCB based on its softening–melting–dripping characteristics, the evolution behavior and mechanisms of VTM-CCB in cohesive zone and dripping zone were investigated by conducting softening–melting tests under blast furnace conditions. The results show that the structure evolution of VTM-CCB in softening–melting process is correlated to the molten slag, metallic iron, liquid iron, and residual carbon. With the molar ratio of the fixed carbon to the reducible oxygen in iron oxides (FC/O ratio) ranging from 0.8 to 1.0, the VTM-CCB tends to form dense structure and accelerate the softening and melting. With increasing the FC/O ratio to 1.2 and 1.4, the VTM-CCB tends to form concentric circular structure, which could suppress the collapse of packed bed, shift down the location of core cohesive zone, and improve the gas permeability. Although the appropriate increase in FC/O ratio could improve the softening–melting performance of VTM-CCB, a higher FC/O ratio could also promote the precipitation of Ti(C,N), thereby thickening the molten mixtures and deteriorating the dripping behavior. Fully considering the softening–melting–dripping characteristics and permeability, the appropriate FC/O ratio of VTM-CCB should be controlled in the range of 1.0–1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.G. Fu, Y.C. Wen, H.E. Xie, J. Iron Steel Res. Int. 18 (4) (2011) 7–10, 18.

    Article  Google Scholar 

  2. W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, J. Tang, Steel Res. Int. 88 (2017) 1600306.

    Article  Google Scholar 

  3. L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, T. Qi, Trans. Nonferrous Met. Soc. China 25 (2015) 1325–1333.

    Article  Google Scholar 

  4. A. Dehghan-Manshadi, J. Manuel, S. Hapugoda, N. Ware, ISIJ Int. 54 (2014) 2189–2195.

    Article  Google Scholar 

  5. S. Samanta, S. Mukherjee, R. Dey, JOM 67 (2015) 467–476.

    Article  Google Scholar 

  6. M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, P.F. Luo, JOM 68 (2016) 2698–2703.

    Article  Google Scholar 

  7. S.T. Yang, M. Zhou, T. Jiang, Y.J. Wang, X.X. Xue, Trans. Nonferrous Met. Soc. China 25 (2015) 2087–2094.

    Article  Google Scholar 

  8. N.Y. Li, J.L. Zhang, X.L. Liu, Z.J. Liu, Y.R. Liu, Iron and Steel 52 (2017) No. 7, 14–21.

    Google Scholar 

  9. P. Timo, The effect of minor oxide components on reduction of iron ore agglomerates, University of Oulu, Oulu, Finland, 2013.

    Google Scholar 

  10. G.Q. Yang, W.K. Yang, X.S. Li, S.B. Yin, Z.Q. Zhou, Iron Steel Vanadium Titanium 39 (2018) No. 2, 102–109.

    Google Scholar 

  11. H.G. Du, Principle of blast furnace smelting vanadium–titanium magnetite, Science Press, Beijing, China, 1996.

    Google Scholar 

  12. S.Y. Chen, X.J. Fu, M.S. Chu, Z.G. Liu, J. Tang, J. Clean. Prod. 101 (2015) 122–128.

    Article  Google Scholar 

  13. Y. Matsui, M. Sawayama, A. Kasai, Y. Yamagata, F. Noma, ISIJ Int. 43 (2003) 1904–1912.

    Article  Google Scholar 

  14. H.M. Ahmed, N. Viswanathan, B. Bjorkman, Steel Res. Int. 85 (2014) 293–306.

    Article  Google Scholar 

  15. W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, Z.W. Ying, Powder Technol. 342 (2019) 214–223.

    Article  Google Scholar 

  16. A. Kasai, Y. Matsui, ISIJ Int. 44 (2004) 2073–2078.

    Article  Google Scholar 

  17. M.S. Chu, Z.G. Liu, Z.C. Wang, J. Yagi, Steel Res. Int. 82 (2011) 521–528.

    Article  Google Scholar 

  18. C.Y. Narita, M.B. Mourao, C. Takano, Ironmak. Steelmak. 42 (2015) 548–552.

    Article  Google Scholar 

  19. M.S. Chu, J. Yagi, H. Nogami, Steel Res. Int. 78 (2007) 10–18.

    Article  Google Scholar 

  20. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, Y. Inoue, Tetsu-to-Hagané 87 (2001) 357–364.

    Article  Google Scholar 

  21. W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, J. Tang, JOM 69 (2017) 1737–1744.

    Article  Google Scholar 

  22. W. Zhao, M.S. Chu, Y.T. Tang, J. Tang, J. Northeast. Univ. (Nat. Sci.) 36 (2015) 1441–1444.

    Google Scholar 

  23. W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, Z.W. Ying, ISIJ Int. 58 (2018) 1989–1998.

    Article  Google Scholar 

  24. X.L. Liu, S.L. Wu, W. Huang, K.F. Zhang, K.P. Du, ISIJ Int. 54 (2014) 2089–2096.

    Article  Google Scholar 

  25. S.L. Wu, B.Y. Tuo, L.H. Zhang, K.P. Du, Y. Sun, Steel Res. Int. 85 (2014) 233–242.

    Article  Google Scholar 

  26. N. Saito, N. Hori, K. Nakashima, K. Mori, Metall. Mater. Trans. B 34 (2003) 509–516.

    Article  Google Scholar 

  27. A. Shankar, M. Görnerup, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 38 (2007) 911–915.

    Article  Google Scholar 

  28. W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, Z.W. Ying, Metall. Mater. Trans. B 50 (2019) 1878–1895.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are especially thankful to National Natural Science Foundation of China (U1808212), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB45002), Postdoctoral Research Foundation of Jiangsu Province (7114451120), and Transformation Program of Scientific and Technological Achievements of Inner Mongolia Autonomous Region (2019CG073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man-sheng Chu or Bing-ji Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Chu, Ms., Guo, Hw. et al. Softening–melting–dripping characteristics and evolution mechanism of vanadium-bearing titanomagnetite carbon composite briquette used as novel blast furnace burden. J. Iron Steel Res. Int. 28, 1082–1094 (2021). https://doi.org/10.1007/s42243-021-00607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00607-0

Keywords

Navigation