Skip to main content

Advertisement

Log in

Effect of La on inclusions and fracture toughness of low-alloy ultra-high-strength 40CrNi2Si2MoVA steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of La on inclusions and fracture toughness of 40CrNi2Si2MoVA steel was investigated via the optical microscope, scanning electron microscope, image software and electronic universal testing machine. The results reveal that the inclusions in steel without La are mainly MnS and Al2O3–MnS, while the inclusions in steels with La primarily contain La–O–S, La–S and other rare earth complex inclusions contain P and As. La–O–S and La–S are formed under the steelmaking temperature and act as the nucleation core of rare earth complex inclusions containing P and As. According to the segregation model, La–O–S–P–As and La–S–P–As are formed through chemical reactions during the solidification stage. As La content in steels increases from 0 to 0.032 mass%, the average spacing of inclusions is gradually increased from 5.28 to 15.91 μm. The volume fraction of inclusions in steels containing less than 0.018 mass% La approaches 0.006%; however, it is significantly improved to 0.058% when La content is increased to 0.032 mass%. With the increase in La content, the fracture toughness is firstly improved from 63.1 to 80.0 MPa m1/2 due to the increase in average spacing of inclusions and then decreases to 69.6 MPa m1/2 owing to the excessive increase in volume fraction of inclusions. The optimal fracture toughness is found in 40CrNi2Si2MoVA steel with 0.018 mass% La.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, T.Q. Liu, Mater. Sci. Eng. A 528 (2011) 4967–4972.

    Article  Google Scholar 

  2. F.G. Liu, X. Lin, K. Song, M.H. Song, Y.F. Han, W.D. Huang, Acta Metall. Sin. 53 (2017) 325–334.

    Google Scholar 

  3. Y. Chen, J. Liu, F. Huang, L. Chen, Y.J. Su, G.F. Zhou, J. Iron Steel Res. Int. 26 (2019) 1199–1208.

    Article  Google Scholar 

  4. Y. Liu, X.Z. Zheng, S. Osovski, A. Srivastava, J. Mech. Phys. Solids 130 (2019) 21–34.

    Article  MathSciNet  Google Scholar 

  5. Y. Tomita, J. Mater. Sci. 25 (1990) 950–956.

    Article  Google Scholar 

  6. X.G. Liu, C. Wang, Q.F. Deng, B.F. Guo, J. Iron Steel Res. Int. 26 (2019) 941–952.

    Article  Google Scholar 

  7. A. Srivastava, L. Ponson, S. Osovski, E. Bouchaud, V. Tvergaard, A. Needleman, J. Mech. Phys. Solids 63 (2014) 62–79.

    Article  MathSciNet  Google Scholar 

  8. Q.Y. Zang, Y.F. Jin, T. Zhang, Y.T. Yang, J. Iron Steel Res. Int. 27 (2020) 451–460.

    Article  Google Scholar 

  9. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, S. Cui, Steel Res. Int. 90 (2019) 1900103.

    Article  Google Scholar 

  10. X.X. Deng, M. Jiang, X.H. Wang, Acta Metall. Sin. 25 (2012) 241–248.

    Google Scholar 

  11. S. Gao, M. Wang, J.L. Guo, H. Wang, J.G. Zhi, Y.P. Bao, Steel Res. Int. 90 (2019) 1900194.

    Article  Google Scholar 

  12. M.M. Song, B. Song, W.B. Xin, G.L. Sun, G.Y. Song, C.L. Hu, Ironmak. Steelmak. 42 (2015) 594–599.

    Article  Google Scholar 

  13. C.Y. Yang, Y.K. Luan, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.

    Article  Google Scholar 

  14. P. Choudhary, W.M. Garrison Jr., Mater. Manuf. Processes 25 (2010) 180–184.

  15. W.M. Garrison Jr., N.R. Moody, Metall. Trans. A 18 (1987) 1257–1263.

    Article  Google Scholar 

  16. K.J. Handerhan, W.M. Garrison Jr., N.R. Moody, Metall. Trans. A 20 (1989) 105–123.

    Article  Google Scholar 

  17. W.M. Garrison Jr., J.L. Maloney, Mater. Sci. Eng. A 403 (2005) 299–310.

    Article  Google Scholar 

  18. J.L. Maloney, W.M. Garrison Jr., Acta Mater. 53 (2005) 533–551.

    Article  Google Scholar 

  19. W.M. Garrison Jr., A.L. Wojcieszynski, Mater. Sci. Eng. A 464 (2007) 321–329.

    Article  Google Scholar 

  20. Y. Wan, W.Q. Chen, S.J. Wu, J. Rare Earths 31 (2013) 727–733.

    Article  Google Scholar 

  21. X. Liu, L.M. Wang, Appl. Mech. Mater. 184–185 (2012) 1361–1366.

    Article  Google Scholar 

  22. H.P. Wang, L. Xiong, L. Zhang, Y. Wang, Y.Y. Shu, Y.H. Zhou, Metall. Mater. Trans. B 48 (2017) 2849–2858.

    Article  Google Scholar 

  23. Q.S. Zhang, Y. Min, J.J. Xu, C.J. Liu, J. Iron Steel Res. Int. 27 (2020) 631–642.

    Article  Google Scholar 

  24. C.C. Wu, G.G. Cheng, J. Tian, Y. Xie, J. Chin. Rare Earths Soc. 31 (2013) 597–604.

    Google Scholar 

  25. A.X. Sha, F.M. Wang, C.J. Wu, L.R. Dong, S.Y. Li, Y.X. Chen, L.X. Zhu, J. Rare Earths 18 (2000) 50–53.

    Google Scholar 

  26. J.X. Chen, Common chart data handbook for steelmaking, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  27. W.B. Xin, J. Zhang, G.P. Luo, R.F. Wang, Q.Y. Meng, B. Song, Metall. Res. Technol. 115 (2018) 419.

    Article  Google Scholar 

  28. H.P. Wang, P. Yu, S.L. Jiang, B. Bai, L.F. Sun, Y. Wang, Metals 10 (2020) 275.

    Article  Google Scholar 

  29. Y. Li, M Sun, Z.H. Jiang, C.Y. Chen, K. Chen, X.F. Huang, S. Sun, H.B. Li, Metals 9 (2019) 54.

    Article  Google Scholar 

  30. W.C. Li, Iron and Steel 21 (1986) No. 3, 7–12.

    Google Scholar 

  31. Y.D. Li, C.J. Liu, C.L. Li, M.F. Jiang, J. Iron Steel Res. Int. 22 (2015) 457–463.

    Article  Google Scholar 

  32. T.W. Clyne, W. Kurz, Metall. Trans. A 12 (1981) 965–971.

    Article  Google Scholar 

  33. H.H. Guo, B. Song, J.H. Mao, P. Zhao, J. Univ. Sci. Technol. Beijing 32 (2010) 44–49.

    Google Scholar 

  34. Z. Ma, D. Janke, ISIJ Int. 38 (1998) 46–52.

    Article  Google Scholar 

  35. J.Y. Li, W.Y. Zhang, C.F. Wei, P. Li, Inclusions in steel and properties and fracture of steels, Metallurgical Industry Press, Beijing, China, 2012.

    Google Scholar 

  36. W.B. Xin, B. Song, M.M. Song, G.Y. Song, Steel Res. Int. 86 (2015) 1430–1438.

    Article  Google Scholar 

  37. Q. Lin, F. Guo, X.Y Zhu, J. Rare Earths 25 (2007) 485–489.

    Article  Google Scholar 

  38. F. Guo, Q. Lin, J. Rare Earths 24 (2006) 409–412.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1760114 and U1760206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Wang, C., Wang, Pf. et al. Effect of La on inclusions and fracture toughness of low-alloy ultra-high-strength 40CrNi2Si2MoVA steel. J. Iron Steel Res. Int. 28, 1408–1416 (2021). https://doi.org/10.1007/s42243-021-00579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00579-1

Keywords

Navigation