Skip to main content
Log in

Static recrystallization behavior of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The two-pass isothermal hot compression method was used to study the effect of different thermal deformation conditions on static recrystallization behavior in Ni–Cr–Mo series SA508Gr.4N low alloy steel with interval holding time ranging from 1 to 300 s, temperature ranging from 950 to 1150 °C, strain rate ranging from 0.01 to 1 s−1, true strains ranging from 0.1 to 0.2, and initial austenite grain size ranging from 175 to 552 μm. It can be concluded that the static recrystallization volume fraction gradually increases with the increase in the deformation temperature, strain rate, strain and pass interval, and the decrease in the initial grain size, which is mainly due to the increase in the deformation energy storage and dislocations. Moreover, strain-induced grain boundary migration is the nucleation mechanism for static recrystallization of SA508Gr.4N low alloy steel. Based on the stress–strain curve, the predicted value obtained from the established static recrystallization kinetics model is in good consistence with the experimental value, and the static recrystallization thermal activation energy of SA508Gr.4N steel was calculated as 264,225.99 J/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.C. Kim, S.G. Park, K.H. Lee, B.S. Lee, Int. J. Press. Vessel. Pip. 131 (2015) 60–66.

    Article  Google Scholar 

  2. Z.Q. Yang, Z.D. Liu, X.K. He, S.B. Qiao, C.S. Xie, Sci. Rep. 8 (2018) 207–214.

    Article  Google Scholar 

  3. N. Liu, Z.D. Liu, X.K. He, Z.Q. Yang, J. Iron Steel Res. 29 (2017) 402–410.

    Google Scholar 

  4. C.Y. Li, Z.D. Liu, Z.J. Lin, M. Jin, Trans. Mater. Heat Treat. 32 (2011) No. 6, 68–72.

    Google Scholar 

  5. N.Q. Peng, G.B. Tang, J. Yao, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 3, 50–56.

    Article  Google Scholar 

  6. L.X. Li, L.Y. Zheng, B. Ye, Z.Q. Tong, Met. Mater. Int. 24 (2018) 60–66.

    Article  Google Scholar 

  7. L.L. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.L. Du, J. Iron Steel Res. Int. 18 (2011) No. 1, 55–60.

    Article  Google Scholar 

  8. D.Q. Dong, F. Chen, Z.S. Cui, J. Iron Steel Res. Int. 23 (2016) 466–474.

    Article  Google Scholar 

  9. N. Liu, Z.D. Liu, X.K. He, L.T. Ma, J. Iron Steel Res. Int. 23 (2016) 1342–1348.

    Article  Google Scholar 

  10. Z.Q. Yang, Z.D. Liu, X.K. He, S.B. Qiao, C.S. Xie, J. Iron Steel Res. Int. 25 (2018) 1189–1197.

    Article  Google Scholar 

  11. H.J. Mao, R.Z. Zhang, L. Hua, F. Yin, J. Mater. Eng. Perform. 24 (2015) 930–935.

    Article  Google Scholar 

  12. M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, J.J. Li, Mater. Sci. Eng. A 765 (2019) 138300.

    Article  Google Scholar 

  13. M. Muramatsu, Y. Aoyagi, Y. Tadano, K. Shizawad, Computat. Mater. Sci. 87 (2014) 112–122.

    Article  Google Scholar 

  14. A.M. Elwazri, P. Wanjara, S. Yue, ISIJ Int. 43 (2003) 1080–1088.

    Article  Google Scholar 

  15. B. Ma, Y. Peng, B. Jia, Y.F. Liu, J. Iron Steel Res. Int. 17 (2010) No. 8, 61–66.

    Article  Google Scholar 

  16. R. Zeng, L. Huang, H.L. Su, H.J. Ma, Y.F. Ma, J.J. Li, Metals 8 (2018) 340.

    Article  Google Scholar 

  17. Y.G. Liu, J. Liu, M.Q. Li, H. Lin, Computat. Mater. Sci. 84 (2014) 115–121.

    Google Scholar 

  18. M. Jin, B. Lu, X.G. Liu, H. Guo, H.P. Ji, B.F. Guo, J. Iron Steel Res. Int. 20 (2013) No. 11, 67–72.

    Article  Google Scholar 

  19. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.

    Article  Google Scholar 

  20. W.P. Sun, E.B. Hawbolt, ISIJ Int. 37 (1997) 1000–1009.

    Article  Google Scholar 

  21. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538 (2012) 236–245.

    Article  Google Scholar 

  22. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, UK, 2004.

    Google Scholar 

  23. F. Chen, D.S. Sui, Z.S. Cui, J. Mater. Eng. Perform. 23 (2014) 3034–3041.

    Article  Google Scholar 

  24. M. Luo, B. Zhou, R.B. Li, C. Xu, Y.H. Guo, J. Mater. Eng. Perform. 26 (2017) 4157–4165.

    Article  Google Scholar 

  25. P. Zhou, Q.X. Ma, J. Iron Steel Res. Int. 24 (2017) 222–228.

    Article  Google Scholar 

  26. Y.N. Xia, C. Zhang, L.W. Zhang, W.F. Shen, Q.H. Xu, J. Mater. Eng. Perform. 26 (2017) 6140–6148.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Energy Application Technology Research and Engineering Demonstrative Project of China (NY201501), the National High Technology Research and Development Program of China (863 program, No. 2012AA03A501) and the National Key Research and Development Program of China (2016YFB0300203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-kou He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Sb., He, Xk., Xie, Cs. et al. Static recrystallization behavior of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation. J. Iron Steel Res. Int. 28, 604–612 (2021). https://doi.org/10.1007/s42243-020-00536-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00536-4

Keywords

Navigation