Skip to main content

Advertisement

Log in

Microstructure and properties evolution of Nb-bearing medium Cr wear-resistant cast steel during heat treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of quenching temperature and cooling conditions on the microstructure and mechanical properties of a 0.2%Nb medium chromium wear-resistant cast steel was investigated. The microstructure, carbides and volume fraction of retained austenite were characterized using the optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffraction. The influence of heat treatment on hardness, impact toughness and tensile properties of test steel was studied. It can be observed that lath martensite can be obtained under the condition of air cooling and oil cooling upon austenitizing in the range of 900–1020 °C. Total carbide content of 0.2–1.1 wt.% under air cooling is more than that under oil cooling due to the lower cooling rate. Nb6C5, M23C6 and M7C3 were found at lower austenitizing temperature, of which niobium carbide mostly located at grain boundaries, while chromium carbides were uniformly distributed in the matrix with the size of 20–50 nm. The chromium carbides are basically dissolved into the matrix in test steel austenitized at 1020 °C. Meanwhile, the negligible growth of prior austenite grain size is achieved. Specimen austenitized at 1020 °C and cooled in air + tempered at 200 °C has a best combination of hardness, plasticity and tensile strength due to fine grain size and more amount of retained austenite. Under this condition, the hardness is 58 HRC, the impact toughness is 22.92 J/cm2, and the tensile strength is 1136.9 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Lindroos, M. Apostol, V. Heino, K. Valtonen, A. Laukkanen, K. Holmberg, V. Kuokkala, Tribol. Lett. 57 (2015) 24.

    Article  Google Scholar 

  2. M. Lindroos, V. Ratia, M. Apostol, K. Valtonen, A. Laukkanen, W. Molnar, K. Holmberg, V. Kuokkala, Wear 328–329 (2015) 197–205.

    Article  Google Scholar 

  3. J.D. Gates, M.S. Dargusch, J.J. Walsh, S.L. Field, M.J.P. Hermand, B.G. Delaup, J. Saad, Wear 265 (2008) 865–870.

    Article  Google Scholar 

  4. A. Sawamoto, K. Ogi, K. Matsuda, J. Jpn. Inst. Met. 49 (1985) 475–482.

    Article  Google Scholar 

  5. H.K. Zeytin, H. Yildirim, B. Berme, S. Duduoĝlu, G. Kazdal, A. Deniz, J. Iron Steel Res. Int. 18 (2011) No. 11, 31–39.

    Article  Google Scholar 

  6. H.G. Fu, Q. Xiao, H.F. Fu, Mater. Sci. Eng. A 396 (2005) 206–212.

    Article  Google Scholar 

  7. K. Pawlak, B. Białobrzeska, U. Konat, Arch. Civil Mech. Eng. 16 (2016) 913–926.

    Article  Google Scholar 

  8. C.C. Wang, C.G. Shen, Z. Zhang, W. Xu, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00451-8.

    Article  Google Scholar 

  9. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, J. Mater. Sci. Technol. 23 (2007) 659–664.

    Google Scholar 

  10. S. Morito, H. Saito, T. Ogawa, T. Furuhara, T. Maki, ISIJ. Int. 45 (2005) 91–94.

    Article  Google Scholar 

  11. M.C. Tsai, C.S. Chiou, J.S. Du, J.R. Yang, Mater. Sci. Eng. A 332 (2002) 1–10.

    Article  Google Scholar 

  12. M.H. Shaeri, H. Saghafian, S.G. Shabestari, Mater. Des. 34 (2012) 192–200.

    Article  Google Scholar 

  13. J.J. Coronado, Wear 270 (2011) 823–827.

    Article  Google Scholar 

  14. S.H. Jhi, S.G. Louie, M.L. Cohen, J. Ihm, Phys. Rev. Lett. 86 (2001) 3348–3351.

    Article  Google Scholar 

  15. A.F. Farah, O.R. Crnkovic, L.C.F. Canale, J. Mater. Eng. Perform. 10 (2001) 42–45.

    Article  Google Scholar 

  16. G.Q. Zhang, F.M. Wang, T.S. Li, R.P. Pang, C.R. Li, Hot Working Technol. 43 (2014) No. 18, 94–97.

    Google Scholar 

  17. V. Javaheri, T.T. Nyo, D. Porter, 9th International Symposium on High-Temperature Metallurgical Processing, Springer, 2018, pp. 365–379.

  18. T. Zhang, J. Cao, L.D. Teng, Y.T. Yang, China Foundry 66 (2017) 1100–1103.

    Google Scholar 

  19. Y.F. Jin, T. Zhang, Q.Y. Zang, Y.T. Yang, J. Iron Steel Res. Int. 26 (2019) 462–471.

    Article  Google Scholar 

  20. Y.T. Yang, X.Z. Hang, H.L. Zhou, S.Y. Chen, X. Fan, Electrolysis unit for measuring precipitated phases in multiple types of steel, China, CN201420338523.2, 2014,

  21. L.D. Teng, T.T. Zhao, T.F. Cheng, Y.T. Yang, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00433-w.

    Article  Google Scholar 

  22. H. Bhadeshia, R. Honeycombe, Steels: microstructure and properties, Butterworth-Heinemann, Oxford, UK, 2017.

    Google Scholar 

  23. W.L. Gao, Y. Leng, D.F. Fu, J. Teng, Mater. Des. 105 (2016) 114–123.

    Article  Google Scholar 

  24. M. Taneike, K. Sawada, F. Abe, Metall. Mater. Trans. A 35 (2004) 1255–1262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jc., Zhang, T. & Yang, Yt. Microstructure and properties evolution of Nb-bearing medium Cr wear-resistant cast steel during heat treatment. J. Iron Steel Res. Int. 28, 739–751 (2021). https://doi.org/10.1007/s42243-020-00510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00510-0

Keywords

Navigation