Skip to main content
Log in

Effect of Mg addition on temper embrittlement in 2.25Cr–1Mo steel doped with 0.056% P–Mg segregation behavior at grain boundary

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To verify the microalloying function and segregation behavior of trace Mg at grain boundary in steel, the 2.25Cr–1Mo steel doped with 0.056% P containing different Mg contents was refined with a vacuum-induction furnace. The effects of trace Mg addition on the temper embrittlement susceptibility of 2.25Cr–1Mo steel were studied by step-cooling test and the segregation behavior of Mg at grain boundary was explored by Auger electron spectroscopy. It is shown that P-induced temper embrittlement susceptibility can be reduced after subjecting to step-cooling treatment with trace Mg addition, mainly benefited from the segregation of Mg at grain boundary. This segregation can decrease the segregation amounts of P and S, especially for P, and increase the grain boundary cohesion, reducing the adverse effect on temper embrittlement caused by P and S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.J. McMahon Jr., L. Marchut, J. Vac. Sci. Technol. 15 (1978) 450–466.

    Article  Google Scholar 

  2. S.H. Song, J. Wu, L.Q. Weng, Z.X. Yuan, Mater. Sci. Eng. A 497 (2008) 524–527.

    Article  Google Scholar 

  3. J. Kameda, Y. Nishiyama, Mater. Sci. Eng. A 528 (2011) 3705–3713.

    Article  Google Scholar 

  4. M.P. Seah, Acta Metall. 28 (1980) 955–962.

    Article  Google Scholar 

  5. Y. Yang, S.L. Chen, Calphad 57 (2017) 134–141.

    Article  Google Scholar 

  6. M. Mackenbrock, H.J. Grabke, Steel Res. 62 (1991) 371–378.

    Article  Google Scholar 

  7. M. Jafari, Y. Kimura, K. Tsuzaki, Metall. Mater. Trans. A 43 (2012) 2453–2465.

    Article  Google Scholar 

  8. S.H. Song, Z.X. Yuan, D.D. Shen, L.Q. Weng, J. Wuhan Univ. Technol. 22 (2007) 1–6.

    Article  Google Scholar 

  9. Z. Qu, C.J. McMahon, Metall. Trans. A 14 (1983) 1101–1108.

    Article  Google Scholar 

  10. C.J. McMahon, A.K. Cianelli, H.C. Feng, Metall. Trans. A 8 (1977) 1055–1057.

    Article  Google Scholar 

  11. M. Guttmann, Surf. Sci. 53 (1975) 213–227.

    Article  Google Scholar 

  12. C.J. Wu, X.L. Tang, Iron and Steel 26 (1991) 31–35.

    Google Scholar 

  13. X. Jiang, S.H. Song, Mater. Sci. Eng. A 613 (2014) 171–177.

    Article  Google Scholar 

  14. W.B. Xin, B. Song, M.M. Song, G.Y. Song, Steel Res. Int. 86 (2015) 1430–1438.

    Article  Google Scholar 

  15. S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, T.D. Xu, Mater. Sci. Eng. A 360 (2003) 96–100.

    Article  Google Scholar 

  16. S. Hong, J. Lee, K.S. Park, S. Lee, Mater. Sci. Eng. A 589 (2014) 165–173.

    Article  Google Scholar 

  17. H.Y. Bor, C.G. Chao, C.Y. Ma, Scripta Mater. 38 (1997) 329–335.

    Article  Google Scholar 

  18. H. Itoh, M. Hino, S. Banya, Tetsu-to-Hagané 83 (1997) 623–628.

    Article  Google Scholar 

  19. Y. Zhao, S.H. Song, Steel Res. Int. 89 (2018) 1800096.

    Article  Google Scholar 

  20. G. Tauber, H.J. Grabke, PCCP 82 (1978) 298–301.

    Google Scholar 

  21. H. Ohta, H. Suito, Metall. Mater. Trans. B 28 (1997) 1131–1139.

    Article  Google Scholar 

  22. S.K. Saxena, in: 1996 Steelmaking Conference Proceeding, Iron and Steel Soc. of AIME, Warrendale, PA, USA, 1996, pp. 89.

  23. L.Z. Wang, S.F. Yang, J.S. Li, S. Zhang, J.T. Ju, Metall. Mater. Trans. B 48 (2017) 805–818.

    Article  Google Scholar 

  24. A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, H. Yasui, Nippon Steel Tech. Res. 90 (2004) 2–6.

    Google Scholar 

  25. F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, Z. Xu, J. Iron Steel Res. Int. 16 (2009) 69–74.

    Article  Google Scholar 

  26. X.B. Li, Y. Min, Z. Yu, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 23 (2016) 415–421.

    Article  Google Scholar 

  27. G. Da Rosa, P. Maugis, A. Portavoce, J. Drillet, N. Valle, E. Lentzen, K. Hoummada, Acta Mater. 182 (2020) 226–234.

    Article  Google Scholar 

  28. K.D. Shi, Fundamentals of materials science, Mechanical Technology Press, Beijing, China, 2003.

    Google Scholar 

  29. J.X. Chen, Common use chart and thermodynamic data for steelmaking, Metallurgical Industry Press, Beijing, China, 2010.

  30. W.S. Sun, G.R. Ding, M.W. Luo, J. Fu, Y.G. Yu, A.R. Wang, Ordnance Mater. Sci. Eng. 20 (1997) 3–8.

    Google Scholar 

  31. H. Kaneko, T. Nishizawa, K. Tamaki, A. Tanifuji, J. Japan Inst. Metals 29 (1965) 166–170.

    Article  Google Scholar 

  32. R.A. Mulford, C.J. McMahon, D.P. Pope, H.C. Feng, Met. Trans. A 7 (1976) 1183–1195.

    Article  Google Scholar 

  33. J.R. Low Jr., D. F. Steim, A.M. Turkalo, R.P. Laforce, Trans. TMS-AIME 242 (1968) 14–24.

    Google Scholar 

  34. T.H. Ju, X.Y. Ding, Y.Y. Zhang, X.K. Chen, W.L. Chen, B. Wang, X.L. Yan, High Temp. Mater. Processes 38 (2019) 498–504.

    Article  Google Scholar 

  35. T.H. Ju, X.Y. Ding, L. Zhang, W.L. Chen, B. Wang, X.L. Yan, ISIJ Int. 20 (2020) 2416–2424.

    Article  Google Scholar 

  36. T.H. Ju, X.Y. Ding, Y.Y. Zhang, W.L. Chen, X.K. Cheng, B. Wang, J.X. Dai, X.L. Yan, Entropy 20 (2018) 808.

    Article  Google Scholar 

  37. D.B. Zhang, C.J. Wu, Acta Metall. Sin. 24 (1988) 100–105.

    Google Scholar 

  38. S.Y. Feng, C.J. Wu, J.H. Li, J. Iron Steel Res. Int. 6 (1994) 54–60.

    Google Scholar 

  39. H.L. Liu, Effect of rare earth on microstructure and property of X80 pipeline steel, Northeastern University, Shenyang, China, 2011.

    Google Scholar 

  40. M. Guttmann, D. Mclean, in: W.C. Johnson, J.M. Blakely (Eds.), Interfacial Segregation, Metals Park ASM, Ohio, France, 1979, pp. 261.

  41. K. Abiko, S. Suzuki, H. Kimura, Tetsu-to-Hagané 69 (1983) 625–630.

    Article  Google Scholar 

  42. R.H. Jones, D.R. Baer, L.A. Charlot, M.T. Thomas, Metall. Trans. A 19 (1988) 2005–2011.

    Article  Google Scholar 

  43. P. Lejček, M. Šob, V. Paidar, Prog. Mater. Sci. 87 (2017) 83–139.

    Article  Google Scholar 

  44. P. Lejček, M. Šob, V. Paidar, V. Vitek, Scripta Mater. 68 (2013) 547–550.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China for their financial support under contract No. 51801210. The authors also thank Prof. S.N. Zhang in Institute of Metal Research for valuable discussions and L.P. Yang in Tsinghua University for her careful analysis and testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-bing Li or Ying-che Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xb., Dong, X., Zhao, Px. et al. Effect of Mg addition on temper embrittlement in 2.25Cr–1Mo steel doped with 0.056% P–Mg segregation behavior at grain boundary. J. Iron Steel Res. Int. 28, 1259–1267 (2021). https://doi.org/10.1007/s42243-020-00506-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00506-w

Keywords

Navigation