Skip to main content
Log in

Influence of initial iron ore particle size on CO2 gasification behavior and strength of ferro-coke

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Highly reactive ferro-coke has been widely studied due to its contribution to the energy saving and emission reduction in blast furnace ironmaking. To optimize the coking process of ferro-coke and improve its metallurgical properties, it is necessary to clarify the influence of initial iron ore on the strength, micro-morphology and CO2 gasification reaction behavior of formed ferro-coke. The effects of initial iron ore particle size (0.50–1.00, 0.25–0.50 and 0.074–0.125 mm) on the CO2 gasification reaction of ferro-coke were analyzed using thermo-analysis technique. In addition, the effects of initial iron ore particle size on the strength and morphology of ferro-coke were investigated by drum test, digital microscopy and scanning electron microscopy. The results show that iron reduced from iron ore has a great promotion effect on the CO2 gasification reaction of ferro-coke. The smaller the particle size of initial iron ore, the more intense the gasification reaction, and the lower the starting temperature for gasification reaction of ferro-coke. The results of kinetic calculation show that the apparent activation energy of ferro-coke decreases with the decreasing particle size of blended iron ore. The particle size of initial iron ore has a great impact on the strength of ferro-coke. The ferro-coke prepared by 0.25–0.50 mm iron ore presents the best strength in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zhang, E. Worrell, W. Crijns-Graus, F. Wagner, J. Cofala, Energy 78 (2014) 333–345.

    Google Scholar 

  2. R. Xu, L. Xu, B. Xu, J. Clean. Prod. 152 (2017) 259–270.

    Google Scholar 

  3. B. Xu, B. Lin, Appl. Energy 161 (2016) 375–386.

    Google Scholar 

  4. G.P. Lin, J. Dai, Energy for Metallurgical Industry 37 (2018) No. 3, 3–5.

    Google Scholar 

  5. K. Higuchi, S. Nomura, K. Kunitomo, H. Yokoyama, M. Naito, ISIJ Int. 51 (2011) 1308–1315.

    Google Scholar 

  6. H. Wang, Z. Wang, M. Chu, W. Zhao, Z. Liu, in: Proceedings of the 10th CSM Steel Congress and the 6th Baosteel Biennial Academic Conference, Metallurgical Industry Press, Beijing, China, 2015, pp. 1−6.

  7. B. Gao, Jiangxi Metallurgy 37 (2017) No. 5, 13–16.

    Google Scholar 

  8. U. Srivastava, S.K. Kawatra, T.C. Eisele, Int. J. Miner. Process. 119 (2013) 51–57.

    Google Scholar 

  9. D. Fu, G.Tang, Y. Zhao, J. D’Alessio, C.Q. Zhou, Int. J. Heat Mass Transfer 103 (2016) 77–86.

    Google Scholar 

  10. Z.Q. Gu, L.J. Jia, X.Z. Shi, Industrial Furnace 38 (2016) No. 3, 1–4.

    Google Scholar 

  11. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, Y. Inoue, Nippon Steel Tech. Rep. 94 (2006) 103–108.

    Google Scholar 

  12. S. Nomura, K. Higuchi, K. Kunitomo, M. Naito, ISIJ Int. 50 (2010) 1388–1395.

    Google Scholar 

  13. A. Kasai, Y. Matsui, ISIJ Int. 44 (2004) 2073–2078.

    Google Scholar 

  14. L. Chen, Blast furnace ironmaking process and calculation, Metallurgical Industry Press, Beijing, China, 1991.

    Google Scholar 

  15. K.J. Li, J.L. Zhang, Y.P. Zhang, Z.J. Liu, X. Jiang, Chin. J. Process Eng. 14 (2014) 162–172.

    Google Scholar 

  16. T. Murakami, E. Kasai, ISIJ Int. 51 (2011) 1220–1226.

    Google Scholar 

  17. J.L. Zhang, J. Guo, G.W. Wang, L.M. Zhang, T. Xu, C.L. Zhang, Iron and Steel 51 (2016) No. 9, 22–29.

    Google Scholar 

  18. H. Wang, W. Zhao, M. Chu, Z. Liu, J. Tang, Z. Ying, Powder Technol. 328 (2018) 318–328.

    Google Scholar 

  19. H. Zhang, The research of reaction mechanism mechanism of ferro-coke gasification, Wuhan University of Science and Technology, Wuhan, China, 2015.

    Google Scholar 

  20. S.Z. Shi, S. Lu, X.G. Bi, P. Li, Y.G. Mao, Q. Zheng, Iron and Steel 50 (2015) No. 7, 15–19.

    Google Scholar 

  21. S.X. Qiu, S.F. Zhang, Q.Y. Zhang, G.B. Qiu, L.Y. Wen, J. Iron Steel Res. Int. 24 (2017) 1169–1176.

    Google Scholar 

  22. A. Uchida, T. Kanai, Y. Yamazaki, K. Hiraki, Y. Saito, H. Aoki, N. Komatsu, N. Okuyama, M. Hamaguchi, ISIJ Int. 53 (2013) 403–410.

    Google Scholar 

  23. A. Uchida, Y. Yamazaki, S. Matsuo, Y. Saito, Y. Matsushita, H. Aoki, M. Hamaguchi, ISIJ Int. 56 (2016) 2132–2139.

    Google Scholar 

  24. A. Uchida, Y. Yamazaki, S. Matsuo, Y. Saito, Y. Matsushita, H. Aoki, M. Hamaguchi, ISIJ Int. 57 (2017) 1524–1530.

    Google Scholar 

  25. H. Wang, M. Chu, Z. Wang, W. Zhao, Z. Liu, J. Tang, Z. Ying, JOM 70 (2018) 1929–1936.

    Google Scholar 

  26. R. Xu, H. Zheng, W. Wang, J. Schenk, Z. Xue, Energy Fuels 32 (2018) 12118–12127.

    Google Scholar 

  27. W. Yu, T. Sun, Z. Liu, J. Kou, C. Xu, ISIJ Int. 54 (2014) 56–62.

    Google Scholar 

  28. H. Zheng, W. Wang, R. Xu, R. Zan, J. Schenk, Z. Xue, Energies 11 (2018) 2595.

    Google Scholar 

  29. R. Xu, B. Dai, W. Wang, J. Schenk, Z. Xue, Fuel Process. Technol. 173 (2018) 11–20.

    Google Scholar 

  30. J. Wei, Q. Guo, H. Chen, X. Chen, G. Yu, Bioresour. Technol. 220 (2016) 509–515.

    Google Scholar 

  31. W. Huo, Z. Zhou, F. Wang, G. Yu, Chem. Eng. J. 244 (2014) 227–233.

    Google Scholar 

  32. R.C. Everson, H.W.J.P. Neomagus, H. Kasaini, D. Njapha, Fuel 85 (2006) 1076–1082.

    Google Scholar 

  33. R. Xu, J. Zhang, G. Wang, H. Zuo, Z. Liu, K. Jiao, Y. Liu, K. Li, Metall. Mater. Trans. B 47 (2016) 2535–2548.

    Google Scholar 

  34. B.K. Sarkar, S. Samanta, R. Dey, G.C. Das, Int. J. Miner. Process.152 (2016) 36–45.

    Google Scholar 

  35. M. Grigore, R. Sakurovs, D. French, V. Sahajwalla, Energy Fuels 23 (2009) 2075–2085.

    Google Scholar 

  36. K. Li, J. Zhang, Z. Liu, X. Ning, T. Wang, Ind. Eng. Chem. Res. 53 (2014) 5737–5748.

    Google Scholar 

  37. K. Guo, J.L. Zhang, G.W. Wang, K.J. Li, J.B. Zhong, H.Y. Wang, China Metallurgy 27 (2017) No. 10, 7–14.

    Google Scholar 

  38. R. Xu, J. Zhang, G. Wang, H. Zuo, P. Li, H. Wang, H. Lin, S. Liu, J. Therm. Anal. Calorim. 123 (2016) 773–783.

    Google Scholar 

  39. L.T. Vlaev, I.G. Markovska, L.A. Lyubchev, Thermochim. Acta 406 (2003) 1–7.

    Google Scholar 

  40. R. Xu, B. Dai, W. Wang, J. Schenk, A. Bhattacharyya, Z. Xue, Energy Fuels 32 (2018) 1188–1195.

    Google Scholar 

  41. W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Fuel Process. Technol. 159 (2017) 118–127.

    Google Scholar 

  42. G. Domazetis, B.D. James, J. Liesegang, M. Raoarun, M. Kuiper, I.D. Potter, D. Oehme, Fuel 93 (2012) 404–414.

    Google Scholar 

  43. P. Li, X.G. Bi, S.Z. Shi, H.X. Zhang, Q. Dong, Z. Long, J. Iron Steel Res. 27 (2015) No.12, 10–15.

    Google Scholar 

  44. X. He, Coal chemistry, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  45. S. Nomura, H. Terashima, E. Sato, M. Naito, ISIJ Int. 47 (2007) 823–830.

    Google Scholar 

  46. Y. Yamazaki, H. Hayashizaki, K. Ueoka, K. Hiraki, Y. Matsushita, H Aoki, T. Miura, Tetsu-to-Hagane 96 (2010) 536–544.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (51704216 and U1760101), National Postdoctoral Program for Innovative Talents Funded Project (BX20180023) and China Postdoctoral Science Foundation Funded Project (2019M650424).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Fang-fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Rs., Deng, Sl., Zheng, H. et al. Influence of initial iron ore particle size on CO2 gasification behavior and strength of ferro-coke. J. Iron Steel Res. Int. 27, 875–886 (2020). https://doi.org/10.1007/s42243-020-00454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00454-5

Keywords

Navigation